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ABSTRACT
This paper introduces a method for Multimedia Event De-
tection (MED). Given training videos for a certain event, a
classifier is constructed to identify videos displaying it. In
particular, the problems of the weakly supervised setting and
the unclear event structure are addressed in this paper. The
first issue is associated with the loosely annotated training
videos that usually contain many irrelevant shots. The sec-
ond one is the difficulty of assuming the event structure in
advance, because videos can be created by arbitrary cam-
era and editing techniques. To overcome these problems, a
Hidden Conditional Random Field (HCRF) is used where
hidden states work as an intermediate layer to discriminate
between relevant and irrelevant shots to the event. In ad-
dition, the relation among hidden states characterises the
event structure. Thus, the above problems are managed by
optimising hidden states and their relation, so as to distin-
guish videos where the event occurs from the rest of videos.
Experimental results on TRECVID video data validate the
effectiveness of HCRFs in this context.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Experimentation, Performance

Keywords
Multimedia Event Detection, Hidden Conditional Random
Fields, Concept Detection, TRECVID

1. INTRODUCTION
With the explosive growth of video data on the Web, it is

necessary to develop methods which analyse a large number
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of videos based on automatically extractable features, and
accurately retrieve the ones of interest. This paper deals
with the Multimedia Event Detection (MED) task to iden-
tify videos where a particular event occurs. An event is
defined as a complex activity of objects at a specific place
and time [19]. Figure 1 shows two videos where the event
“birthday party” occurs. Here, Video 1 is made of a single
shot that continuously follows persons’ actions, while Video
2 is created by concatenating shots each shows a different
scene from an isolated camera position. In contrast to the
traditional task of retrieving shots with certain meanings,
events in MED may be displayed in single shots like Video 1
in Figure 1, or over shot sequences like Video 2. Thus, MED
is more challenging than the traditional shot retrieval, be-
cause it requires to consider not only shots in a video but
also their relation. This paper addresses two problems in
MED described below.

Video 1 Video 2
(Shot 1) (Shot 2) (Shot 3) (Shot 4)(Shot 1)

Figure 1: Example videos containing the event
“birthday party”.

(1) Weakly supervised setting: Training videos anno-
tated with the occurrence or absence of a certain event are
required to build a classifier distinguishing videos showing
this event from the remaining videos. A video involves
the time dimension where semantic meanings continuously
change as video frames and audio samples are played se-
quentially. Due to the limited manpower and the subjectiv-
ity, it is impractical to manually annotate which segments
in videos are relevant or irrelevant to an event. Thus, a clas-
sifier has to be built under weakly supervised setting, where
each training video is loosely annotated to only indicate if
the event is contained or not.
For the simplicity, videos annotated with an event’s occur-

rence and its absence are called positive videos and negative
videos, respectively. For example, Video 1 and Video 2 in
Figure 1 are positive videos for the event “birthday party”.
However, as seen from Shot 1 and Shot 4 in Video 2, pos-
itive videos often contain many shots that are irrelevant to
the event. Hence, in weakly supervised setting, the classifier
construction process needs to identify what kind of shots are



relevant or irrelevant to the event.
(2) Unclear event structure: An event consists of sev-
eral sub-events. For instance, the event “birthday party”
includes sub-events such as “blowing candle fires”, “opening
a gift”, or “eating a birthday cake”. To capture this kind of
event structure, researchers traditionally limit the domain
of videos. For example, in baseball videos, the event “home
run” is presented by a shot sequence, where the first shot is
taken behind the pitcher, the second shot follows the ball,
and the third shot shows the batter running [3]. In addition,
in movies, the conversation event is presented by a shot se-
quence, where shots showing one person and those present-
ing another one are repeated one after another [26]. Thus,
events in the above videos can be easily detected based on
heuristics which is implemented using pre-defined models,
such as Hidden Markov Model (HMM) [3] or Finite State
Machines (FSMs) [26].
Compared to this, we target real-world videos which are

‘uncontrolled’ in the sense that shots can be taken by arbi-
trary camera techniques and in arbitrary shooting environ-
ments, and what is more, they can be concatenated by arbi-
trary editing techniques. For such uncontrolled videos, the
structure of an event cannot be assumed in advance, because
relevant shots are characterised by significantly different fea-
tures and their temporal relationship is unclear. Hence, by
analysing training videos, we need to statistically mine fea-
tures that are useful for characterising relevant shots, and
their temporal relation.
To deal with the above weakly supervised setting and un-

clear event structure, we use a Hidden Conditional Random
Field (HCRF) which is a probabilistic discriminative classi-
fier with a set of hidden states [14]. We indirectly associate
videos with an event by using hidden states as an interme-
diate layer, which characterises shots relevant or irrelevant
to the event and their temporal relationship. In the HCRF,
each shot in every positive or negative video is assigned to
a hidden state which is characterised by a certain feature
combination as well as the relevance to the event. Through
this assignment, hidden states and their relation are opti-
mised so as to discriminate between positive and negative
videos. Experimental results show that, compared to the
direct association between videos and events, the indirect
association by HCRFs leads to more accurate performance.
In addition, we intensively investigate several characteristics
of HCRFs and indicate future directions of how to further
improve the performance.

2. RELATED WORK
MED is one of tasks established in TRECVID which is

an annual worldwide competition on video analysis and re-
trieval [19]. MED started from TRECVID 2011 and many
methods have been developed so far [15, 8, 12, 9]. How-
ever, most of them adopt the same framework as the tra-
ditional shot retrieval. Specifically, despite the fact that
each video consists of a different number of shots, features
extracted from shots are aggregated into a vector with a
fixed dimensionality. Based on this ‘video-level’ vector rep-
resentation, classifiers used for shot retrieval (typically Sup-
port Vector Machine (SVM)) are built. Usually, a video-
level vector is obtained by max-pooling [8, 12] or average-
pooling [15], which takes the maximum or the average fea-
ture value across shots. In addition, feature-accumulation
accumulates features extracted from various spatio-temporal

regions in a video and represents their distribution with a
probabilistic model [9]. The above video-level vectors are
clearly too coarse. The reason is that max-pooling may over-
estimate values on features which are irrelevant to an event,
and average-pooling and feature-accumulation may under-
estimate the ones on relevant features. Moreover, none
of these approaches consider the temporal relation among
shots. Compared to them, our method precisely models fea-
tures in shots and their temporal relation using the interme-
diate layer of hidden states. We experimentally show that
our approach outperforms max-pooling and average-pooling.
To model event structures, HMMs (or other types of gen-

erative models) have been traditionally used [3, 5]. However,
HMMs are ‘one-class’ classifiers which only maximise the
likelihood of positive videos without taking into account neg-
ative videos. In other words, the boundary between videos
where an event occurs and the irrelevant videos is supported
only from the positive side. Thus, without any prior knowl-
edge, HMMs require a large number of positive videos to
achieve accurate performance. Since events are very specific
concepts, collecting many positive videos is difficult. Com-
pared to HMMs, HCRFs are discriminative classifiers using
both positive and negative videos. Many publications re-
port that discriminative classifiers are considerably superior
to one-class classifiers like HMMs [11, 25].
Furthermore, HMMs model hidden states using isolated

probability distributions. This imposes the rigid restriction
on HMMs, where due to the computational tractability, each
shot needs to be regarded as conditionally-independent of
the other shots. Here, a hidden state at each shot is cho-
sen only by considering states and their transitions at the
previous shot. Thus, HMMs cannot consider long-range de-
pendencies among shots, which is undesirable for targeting
events with unclear structures. In contrast, HCRFs model
the conditional probability of the entire sequence using a
single probability distribution, where features characteris-
ing long-range dependencies can be easily incorporated. In
Section 4, we investigate the temporal characteristic of un-
clear event structures.
Existing methods which are the most related to ours are

event detection using Conditional Random Fields (CRFs) [23,
24]. A CRF, which forms the basis of an HCRF, is a prob-
abilistic discriminative classifier for labelling elements in a
sequence [10]. Wang et al. used a CRF to label whether each
shot in a video shows a highlight or not [23]. Also, targeting
a network consisting of many sensors, Yin et al. used a CRF
to annotate whether the recording of each sensor at every
time point indicates the occurrence of an event [24]. Al-
though CRFs can extract unclear event structures by treat-
ing long-range dependencies among shots, they require train-
ing videos where each shot is annotated with an event’s oc-
currence or absence, thus cannot be used in weakly super-
vised setting. In contrast, HCRFs can handle this setting
where CRF’s shot labelling is performed on hidden states,
and labelling results are combined to estimate the label for
the whole video.
Finally, HCRFs have been successfully used in different

applications such as object classification [14], action (ges-
ture) recognition [27, 22], and audio analysis [7]. But, to
the best of our knowledge, this paper describes the first ap-
plication of HCRFs to MED.

3. EVENT DETECTION METHOD



Person: 0.7
Indoor: 0.8
Table:   0.4
Crowd: 0.2
...

Person: 0.9
Indoor: 0.9
Table:   0.5
Crowd: 0.2
...

Person: 1.0
Indoor: 0.9
Table:   0.3
Crowd: 0.2
...

Shot IDShot ID

Person: 0.8
Indoor: 0.9
Table:   0.6
Crowd: 0.1
...

Person: 0.9
Indoor: 0.7
Table:   0.3
Crowd: 0.2
...

Person: 1.0
Indoor: 0.9
Table:   0.6
Crowd: 0.5
...

Person: 0.2
Indoor: 0.1
Table:   0.8
Crowd: 0.5
...

Person: 0.7
Indoor: 0.4
Table:   0.6
Crowd: 0.3
...

Person: 0.0
Indoor: 0.4
Table:   0.2
Crowd: 0.3
...

Person: 0.9
Indoor: 0.2
Table:   0.0
Crowd: 0.1
...

Person: 0.1
Indoor: 0.5
Table:   0.2
Crowd: 0.0
...

Shot ID

Positive videos (annotated with an event’s occurrence)

Multi-dimensional sequence
of concept detection scores

Person: 1.0
Indoor: 0.0
Table:   0.3
Crowd: 0.1
...

Person: 0.7
Indoor: 0.9
Table:   0.2
Crowd: 0.2
...

Person: 1.0
Indoor: 0.8
Table:   0.2
Crowd: 0.5
...

Person: 1.0
Indoor: 0.8
Table:   0.3
Crowd: 0.0
...

Shot ID

Person: 0.8
Indoor: 0.1
Table:   0.0
Crowd: 0.6
...

Person: 0.8
Indoor: 0.0
Table:   0.0
Crowd: 0.3
...

Person: 1.0
Indoor: 0.2
Table:   0.0
Crowd: 0.1
...

Person: 1.0
Indoor: 0.2
Table:   0.1
Crowd: 0.0
...

Person: 0.9
Indoor: 0.1
Table:   0.0
Crowd: 0.0
...

Person: 0.5
Indoor: 0.0
Table:   0.0
Crowd: 0.5
...

Shot ID

Negative videos (annotated with the event’s absence)

(HCRF training process) (HCRF test process)

Test videos

0.8
Conditional probability
of the event’s occurrence

Shot ID

Shot ID Shot ID

1. Concept detection

2. Train an HCRF 3. Apply the trained HCRF

Shot ID
Shot ID

Figure 2: An overview of our MED method for “birthday party” used as an example event.

An event is ‘highly-abstracted’ in the sense that various
objects interact with each other in different situations. Low-
level features like colour, edges, and motion turned out to
be ineffective in this context, because the set of shots rele-
vant to a certain event has got a huge variance in the feature
space. Hence, we adopt a concept-based approach which rep-
resents shots based on detection results of concepts such as
Person, Building, or Car [21]. Since the detector of each
concept is built using a large amount of training shots, it
can be robustly detected irrespective of sizes, positions and
directions in video frames. Thus, concept detection results
can be considered as ‘high-level’ features, where the varia-
tion of relevant shots becomes smaller and can be modelled
more easily.
Figure 2 shows an overview of our concept-based MED

method. First, each video is divided into shots using a sim-
ple method detecting a shot boundary as a significant dif-
ference of colour histograms between two consecutive video
frames. Then, concepts in each shot are detected. This
yields detection scores representing the probability of a con-
cept’s presence. Thereby, as shown in the middle of Figure 2,
every video is represented as a multi-dimensional sequence
where each shot is temporally ordered and represented as a
vector of concept detection scores.
Subsequently, given an event, an HCRF is trained using

positive and negative videos, where the event’s occurrence or
absence is annotated at the video level (weakly supervised
setting). Hidden states in the HCRF are probabilistically
optimised so as to characterise features of shots relevant (or
irrelevant) to the event and their temporal relation. After-
wards, as shown in the rightmost of Figure 2, the trained
HCRF is used to compute the conditional probability of the
event’s occurrence for each test video. Finally, the sorted
list of test videos based on these conditional probabilities is
returned as an MED result. Below, we describe the concept
detection process and the HCRF training/test process.

3.1 Concept Detection
The vocabulary of concepts should be sufficiently rich for

describing various events. We use Large-Scale Concept On-
tology for Multimedia (LSCOM) which is one of the most
popular ontologies in the field of multimedia retrieval [13].
LSCOM defines a standardised set of 1, 000 concepts that

are selected based on their ‘utility’ for classifying content in
videos, their ‘coverage’ for responding to a variety of queries,
their ‘feasibility’ for automatic detection, and the ‘availabil-
ity’ (observability) of large-scale training data. Our MED
method characterises events using appearances of LSCOM
concepts in shots.
It should be noted that LSCOM may contain no ‘spe-

cific’ concept to some events. For example, although Birth-
day_Cake and Candle are very specific to the event “birth-
day party”, they are not defined in LSCOM. Ideally, for any
event, all specific concepts should be defined because they
are useful for detecting it. Nonetheless, without using spe-
cific concepts, events can be detected using related concepts.
For example, if Indoor, Food, Table, and Explosion_Fire are
shown in a shot, this shot probably contains also the con-
cepts of Birthday_Cake and Candle. Our main purpose is
not to build a large vocabulary of concepts, but to examine
the effectiveness of HCRFs for MED, so we use LSCOM.
The performance may be improved using a larger concept
vocabulary like ImageNet [6] than LSCOM.
To build accurate concept detectors, a large number of

training shots are required to cover diverse concept appear-
ances. In addition, since a concept does not necessarily
appear in all video frames in a shot, features need to be
extracted from many video frames. To this end, we use
the fast SVM training/test method and the fast feature ex-
action method based on matrix operation [18]. The former
realises batch computation of similarities among many train-
ing shots, and the latter computes probability densities of
many descriptors in a batch. These methods make SVM
training/test and feature extraction about 10-37 and 5-7
times faster than the normal implementation, respectively.
Owing to the above fast methods, concept detection is

conducted as follows: First, to characterise shapes of local
regions, Scale-Invariant Feature Transform (SIFT) descrip-
tors are extracted from every other frame. Then, hundreds
of thousands of SIFT descriptors extracted from a shot are
organised into the GMM-SuperVector (GMM-SV) represen-
tation, which represents their distribution using a Gaussian
Mixture Model (GMM). Finally, for each concept, an SVM
is constructed as a concept detector using 30, 000 training
shots. In total, detectors of 351 concepts are built because
training data collected by the system [4] contain more than



one shot annotated as positive (concept presence).

3.2 Event Detection with HCRFs
Figure 3 illustrates an overview of an HCRF. Assume that

a video x is represented as a multi-dimensional sequence
of M concept detection scores, that is, if x has S shots,
x = (x1,x2, . . . ,xS)T, where the i-th shot xi (1 ≤ i ≤ S) is
represented as an M -dimensional vector (xi,1, . . . , xi,M )T,
and xi,c (1 ≤ c ≤ M) represents the c-th concept detec-
tion score of xi. Figure 3 depicts how to determine the
event label y ∈ {0, 1} of x, where 0 and 1 mean the event’s
absence and occurrence, respectively. First, xi is assigned
to a hidden state hi ∈ H from a set of all hidden states H.
Then, y is determined based on the sequence of hidden states
h = (h1, · · · , hS)T assigned to x. More concretely, weakly
supervised setting with y being loosely associated with the
whole sequence x is managed by hi which precisely examines
the suitability of xi for y. In addition, the structure of the
event is characterised by the likelihood of transitions among
hidden states in H. The suitability of x for this structure is
evaluated by the transition between hi and hi+1, assigned
to xi and xi+1 respectively.
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y
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Figure 3: An illustration of our HCRF model.

The above HCRF is implemented based on the following
conditional probability of y given x:

P (y|x, θ) =
∑
∀h∈H

P (y,h|x, θ) =

∑
∀h∈H

eΨ(y,h,x;θ)∑
∀y′∈Y;∀h∈H

eΨ(y′,h,x;θ) ,

(1)
where the middle term indicates that h is marginalised out
by taking the sum of P (y,h|x, θ) over all possible instances
of h (i.e., all possible assignments of hidden states to x). The
middle term is further transformed into the rightmost one,
where the numerator with the fixed y is normalised by the
denominator taking the sum of numerators with all y′ ∈ Y
(= {0, 1}). Thus, the rightmost term can be considered as a
conditional probability. Regarding the computation, for se-
quentially connected hidden states like the ones in Figure 3,
the numerator and denominator can be efficiently computed
by the ‘brief propagation’ algorithm, which propagates the
intermediate result for each hidden state at xi in both the
backward and the forward directions [14].
Also, Ψ(y,h,x; θ) in Equation (1) is called a potential

function and parametrised by θ as follows:

Ψ(y,h,x; θ) =
S∑
i=1

(
xi · θstate(hi) + θlabel(y, hi)

)
+

S∑
i=2

θtrans(y, hi−1, hi) , (2)

where θ consists of the following different types of param-
eters. For hi assigned to xi, θstate(hi) represents an M -
dimensional ‘weight vector’ where each dimension indicates
the weight of a concept. Thus, the product xi · θstate(hi)
represents the degree of matching between xi and hi. In ad-
dition, hi is associated with the ‘label relevance’ θlabel(y, hi),
representing the relevance of hi to the label y. Hence, the
first term (xi ·θstate(hi)+θlabel(y, hi)) handles weakly super-
vised setting by examining whether each shot is relevant (or
irrelevant) to the event. Furthermore, regarding the tran-
sition from hi−1 to hi, θtrans(y, hi−1, hi) represents its rel-
evance to y. Such a ‘transition relevance’ for each pair of
hidden states characterises the temporal structure of the
event. According to the above formulation, the manage-
ment of weakly supervised setting and the extraction of an
unclear event structure are reduced to the estimation of θ.
In total, θ consists of the set of |H| weight vectors θstate =
{θstate(1), · · · , θstate(|H|)}, the set of |Y| × |H| label rele-
vances θlabel = {θlabel(y = 0, 1), · · · , θlabel(y = 1, |H|)}, and
the set of |Y|×|H|2 transition relevances θtrans = {θtrans(y =
0, 1, 1), · · · , θtrans(y = 1, |H|, |H|)}.
Suppose N training videos where the j-th training video

x(j) (1 ≤ j ≤ N) consists of Sj shots, that is, x(j) =
(x(j)

1 , . . . ,x
(j)
Sj

)
T
. In addition, x(j) is annotated with the

event label y(j) = 1 if it is positive, otherwise y(j) = 0.
We estimate θ which maximises the following log-likelihood
based on conditional probabilities for x(j) and y(j):

L(θ) =
N∑
j=1

logP (y(j)|x(j), θ)− ||θ||
2

2σ2 , (3)

where the second term is the L2 regularisation term and
useful for preventing θ from being overfit to training videos.
A smaller σ works as a stronger constraint which inhibits
parameters in θ to be extremely large. The optimal θ∗ is
estimated by a gradient ascent method based on the deriva-
tive of Equation (3) in terms of each parameter in θ [14].
Owing to the brief propagation algorithm, this derivative
can be efficiently computed.
After θ∗ is obtained, the relevance score of each test video

x to the event is computed as the conditional probability of
y = 1 for x, that is, P (y = 1|x, θ∗) based on Equation
(1). The sorted list of test videos in terms of their relevance
scores is returned as the MED result.

4. EXPERIMENTAL RESULTS
Our MED method has been tested using three datasets,

EV consisting of 5, 472 videos (51, 857 shots), BG consisting
of 4, 992 videos (32, 384 shots), and TE consisting of 27, 033
videos (180, 219 shots). According to the official instruction
of the TRECVID MED task, for each of the 10 events, 100
positive videos have been selected from EV. Table 1 sum-
marises these 10 events with the first, second, and third
columns representing the event ID, its description, and the
average number of shots contained in positive videos, respec-
tively. Note that this average is not the average number of
shots displaying an event. Due to weakly supervised setting,
depending on positive videos, the event may be displayed in
a single shot, in some shots, or in all shots.
The set of negative videos has been created by combining

all videos in BG with some ‘near-miss’ videos in EV which
are visually similar to positive videos, but do not contain



Table 1: Events addressed in our experiments.
Event ID Event Description Avr. # of shots

E006 Birthday party 10.69
E007 Changing a vehicle tire 10.32
E008 Flash mob gathering 25.12
E009 Getting a vehicle unstuck 5.38
E010 Grooming an animal 5.10
E011 Making a sandwich 14.06
E012 Parade 9.34
E013 Parkour 20.06
E014 Repairing an appliance 10.72
E015 Working on a sewing project 9.51

the event. Figure 4 depicts two examples of near-miss videos
for the event “birthday party”, where Video 1 only shows a
cake, and Video 2 shows a man cooking cakes for a party. We
firstly assumed that the performance will get degraded using
near-miss videos as negative videos. The reason is that many
test videos where an event occurs may be missed, because
they may be similar to near-miss videos. However, our pre-
liminary experiment has shown no significant difference of
performance between using near-miss videos and not-using
them. Hence, we have included near-miss videos into the set
of negative videos.

Video 1
(Shot 1)

Video 2
(Shot 1) (Shot 2) (Shot 3) (Shot 4)

Figure 4: Examples of near-miss videos for “birth-
day party”.

HCRFs built using positive and negative videos described
above have been tested on videos in TE. Each result has
been evaluated by an Average Precision (AP), which is the
average of precisions at positions of test videos where an
event occurs. A larger AP means that such test videos are
ranked at higher positions.
Finally, it should be noted that each HCRF has been

trained using 100 positive videos and more than 4, 000 nega-
tive videos. This setting may cause the imbalanced problem
which makes it difficult to build a well-generalised HCRF [2].
When the number of negative videos (majority class) is much
higher than that of positive ones (minority class), the mean-
ingless HCRF which classifies all videos as negative may be
regarded as accurate on training videos.
Table 2 shows a preliminary experiment on the imbal-

anced problem. Targeting three events E006, E009 and
E013, this table presents the comparison of APs between
All using all negative videos and Sampled using randomly
sampled 1, 000 negative videos. In particular, the upper line
of Sampled represents the average and standard deviation
of APs, obtained by 10 runs using different sets of negative
videos. The lower line presents the maximum and minimum
APs in the above 10 runs. As shown in Table 2, by compar-
ing APs of All and the average APs of Sampled, the former
seems to be slightly superior to the latter. Thus, the imbal-
anced problem has no strong influence on the performance
of HCRFs. In addition, although Sampled sometimes out-

performs All, its APs are considerably varied. To avoid this
variance and explicitly evaluate the effectiveness of HCRFs,
the following experiments have been conducted using all neg-
ative videos.
Table 2: Performance comparison between All and
Sampled.
Event ID E006 E009 E013

All 0.062 0.128 0.174
Sampled 0.079± 0.006 0.094± 0.015 0.151± 0.013

(max, min) (0.090, 0.069) (0.119, 0.064) (0.179, 0.135)

4.1 Parameter Initialisation
Since the objective function in Equation (3) has many

local maxima, setting a proper initial θ is crucial for building
an HCRF with an effective θ∗. For this, we borrow the
idea of initialisation used in HMMs [16]. First, an initial
θ is determined based on the ‘hard-assignment’ of shots to
hidden states. Here, θ is initialised only using the maximum
likelihood sequence of hidden states for each training video.
Then, the initial θ is refined to θ∗ by the ‘soft-assignment’
where all possible sequences of hidden states are considered
based on Equation (1). Our method for θ initialisation is
summarised below.
Since hidden states are shared by all shots, it is reasonable

to initialise θstate so as to characterise their distribution. To
this end, shots are grouped into the same number of clus-
ters to that of hidden states. Because training videos for
each event contain more than 32, 000 shots, a fast cluster-
ing method [1] is used. However, it is not reasonable to
initialise θstate using cluster centres. Since the range of con-
cept detection scores is between 0 and 1, no cluster centres
take values less than 0. On the other hand, values of weight
vectors in θstate can be negative. Hence, an initial θstate is
required not only to reflect the clustering result, but also to
take positive and negative values.
To obtain a proper initial θstate, we construct a CRF

that is a probabilistic model having a similar structure to
HCRFs [10]. As shown in Figure 5, the CRF is made by re-
moving the event label layer of an HCRF. The CRF has pa-
rameters corresponding to θstate in the HCRF. These are op-
timised by a similar probabilistic optimisation to the HCRF,
concretely, by focusing on the relation between each shot
and its ‘observable’ state label. Thus, when the CRF is
optimised by regarding the cluster index of each shot as
the state label, parameters corresponding to θstate can re-
flect the clustering result by taking some negative values,
and are used as the initial ones. In contrast to HCRFs,
optimised parameters of the CRF are guaranteed as global
optimum [10].
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Figure 5: An illustration of a CRF.

In addition, using the CRF, the maximum likelihood se-
quence of state labels for each training video is computed
and used as a sequence of hidden states. By only consid-
ering such sequences, initial θlabel and θtrans are obtained



based on Equation (3). In this case, Equation (3) becomes
convex [27], and initial θlabel and θtrans can be globally opti-
mised by a conventional gradient ascend method. Our pre-
liminary experiment on three events E006, E009 and E013
shows that, compared to random initial values of θ, the
above initialisation improves the objective function value of
Equation (3) by 5.0 to 20.8%.

4.2 Evaluation for Weakly Supervised Setting
To examine the effectiveness of HCRFs for weakly super-

vised setting, we have compared three methods, SVM avr,
SVMmax, and HCRF . As seen from Equation (2), hidden
states use linear combinations of concept detection scores.
Thus, SVM avr constructs a linear SVM where the deci-
sion function linearly combines concept detection scores of
a video-level vector obtained by average-pooling. Similarly,
SVMmax constructs a linear SVM based on video-level vec-
tors by max-pooling. The SVM parameter for penalising
mis-classified training videos has been heuristically set to 2.
By comparing SVM avr and SVMmax to HCRF , we aim to

reveal the effectiveness of HCRF , where hidden states are
used as an intermediate layer to precisely characterise event
structures based on shot-level vectors of concept detection
scores. In HCRF , 10 hidden states are used, and due to the
computational cost the maximum number of iterations for
estimating θ∗ is set to 50. Note that the performance of
HCRF significantly depends on the parameter σ for L2 reg-
ularisation. We have tested each σ ∈ {0.5, 1, 2, 4} and have
manually selected the one achieving the best performance.
This manual selection aims to avoid underestimating the
performance of HCRF . One solution for the σ selection
problem will be discussed later.
Figure 6 shows the performance comparison between SVM avr,

SVMmax, and HCRF . For each event listed in the verti-
cal direction, APs are depicted in the horizontal direction
where different marks are used depending on methods. The
bottom entry shows the Mean of APs (MAPs) over all 10
events. As can be seen from Figure 6, for 8 of 10 events,
HCRF outperforms SVM avr and SVMmax. In particular, to
check the significance of this result, we have conducted ‘ran-
damisation test’ [20]. It randomly swaps APs of HCRF and
those of SVM avr (or SVMmax) by assuming that there is no
significant performance difference (null hypothesis), and ex-
amines whether the difference between their actual MAPs is
statistically unlikely or not. As a result, we have confirmed
that HCRF is superior to SVM avr and SVMmax with the
significance level of 3%. This validates that hidden states
of HCRFs work well to discriminate between relevant and
irrelevant shots to an event.

4.3 Evaluation for Extracting Unclear Event
Structures

We investigate how useful hidden states are for charac-
terising unclear event structures. First, we compare perfor-
mances of HCRFs with different numbers of hidden states.
This aims to examine whether a larger number of hidden
states cover a more diversity of shots relevant (or irrelevant)
to an event. Figure 7 shows the transition of APs depend-
ing on different numbers of hidden states. As shown in the
horizontal axis, APs obtained by 3, 5, 10 and 15 hidden
states are plotted, in terms of E006, E009, E013 and the
MAP on these events. As can be seen from Figure 7, al-
though the performance improvement is relatively unclear

E006: Birthday party

E007: Changing a 
vehicle tire

E008: Flash mob
gathering

E009: Getting a
vehicle unstuck

E010: Grooming
an animal

E011: Making a
sandwich

E012: Parade

E013: Parkour

E014: Repairng
an appliance

E015: Working on
a sewing project

MAP

0 0.05 0.1 0.15 0.2 0.25

SVM avr SVM max HCRF

Figure 6: Performance comparison between SVM avr,
SVMmax and HCRF .

at the event level, the overall performance (i.e., MAP) is
gradually improved using a larger number of hidden states.
This indicates that a more diversity of shots can be appro-
priately covered using more hidden states. However, using
15 hidden states slightly improves the MAP using 10 hid-
den states. Thus, as the trade-off between the performance
and the computational cost, using 10 hidden states can be
considered as a reasonable choice.

0

0.05

0.1

0.15

0.2

103 15

(Number of
hidden states)5

(AP)

E013 MAP

E009E0060.25

Figure 7: Performance transition using different
numbers of hidden states.

Also, we checked which concepts are characterised by learnt
hidden states. As a result, hidden states which are associ-
ated with large label relevances for an event’s occurrence
(i.e., θlabel(y = 1, h)), are confirmed to appropriately char-
acterise relevant concepts, such as Food and Explosion_Fire
for E006: Birthday party, and Vehicle and Rocky_Ground
for E009: Getting a vehicle unstuck. However, these hidden
states also wrongly characterise several irrelevant concepts,
like Basketball and Rescue_Vehicle for E006, and Bar_Pub



and Airplane_Flying for E009. One main reason is the cur-
rent imperfect concept detection which only uses a single
image feature (SIFT). Thus, we will incorporate motion and
audio features into concept detection to improve its perfor-
mance. This will lead to improve the MED performance.
Now, based on the flexibility of the potential function in

Equation (2), we explore the temporal structures of events
by comparing HCRF to HCRFno and HCRFwin. Regarding
HCRFno, one may think that there are no clear temporal
structures of events in uncontrolled videos, so the transition
among hidden states is meaningless and degrades the per-
formance. Thus, HCRFno does not consider the transition
among hidden states by removing the term

∑
θtrans(y, hi−1, hi)

from Equation (2). Regarding HCRFwin, HCRFs can deal
with long-range dependencies among shots. In particular,
[22] reported that the performance of gesture recognition is
improved using a ‘window feature’, which combines features
at the previous, current and next time points. HCRFwin
implements such a window feature, where xi of the i-shot
in Equation (2) is the concatenation of concept detection
scores at the (i− 1), i and (i+ 1)-th shots.
Table 3 shows the performance comparison among HCRFno,

HCRF and HCRFwin. First, HCRF significantly outper-
forms HCRFno. This indicates that the transition among
hidden states works well to characterise temporal structures
of events. In particular, we found that many videos where
an event does not occur are falsely detected, only because
they contain shots which are similar to relevant shots to the
event. For example, for E006: Birthday party, falsely de-
tected videos just contain shots displaying children (many
positive videos show birthday parties of children). In ad-
dition, for E009: Getting a vehicle unstuck, shots in falsely
detected videos just show cars. Thus, the transition among
hidden states can be considered as effective constraints to
alleviate the above false-positive detection.

Table 3: Performance comparison among HCRFno,
HCRF , and HCRFwin.

E006 E009 E013
HCRFno 0.030 0.061 0.026
HCRF 0.062 0.128 0.174
HCRFwin 0.046 0.084 0.176

The comparison between HCRF and HCRFwin shows that
even if the window feature is used, the performance is similar
or even degraded. This implies that each gesture addressed
in [22] is taken by a single camera, so time points are con-
tinuous and have strong temporal correlation. On the other
hand, each uncontrolled video consists of shots taken by dif-
ferent cameras. So, these shots are discontinuous, and their
temporal correlation is often corrupted by inserting shots,
which display a different meaning than those of surrounding
shots. Therefore, we need to consider longer-range depen-
dencies than HCRFwin while flexibly treating the distorted
order of shots.
To capture the above long-range dependencies, we plan to

model the continuity of a concept’s presence. Each concept
can be considered to have some appearance patterns, related
to the story of a video. For example, when the concept plays
an important role, it is present in many shots, otherwise it
is not present so often. Thus, using the time series segmen-
tation method developed in [17], we will divide a video into
shot sequences each of which is characterised by a proba-

bilistically distinct pattern of the concept’s presence. Such
a pattern indicates the continuity of the concept’s presence
at each shot. Then, xi in Equation (2) will be enlarged by
adding dimensions each of which represents the continuity
of a concept’s presence at the i-th shot.

4.4 Bagging of HCRFs
We described two factors, σ (see Section 4.2) and a set

of negative videos (see Table 2), which cause unstable re-
sults of HCRFs. By checking such results, we acquired one
finding that, videos where an event occurs are ranked at
relatively high positions, while videos where it does not oc-
cur are ranked at different positions. Thus, rather than
cross validation to select an effective σ or set of negative
videos, combining unstable results is expected to improve
the performance. Therefore, in analogy with bagging which
combines classification results obtained by different subsets
of training videos, we combine results by different σs and
different sets of negative videos into a single result.
We have devised two bagging approaches, HCRF (σ)

bag and
HCRF (σ,n)

bag . For an event, HCRF (σ)
bag combines results ob-

tained by four HCRFs, each of which is built using σ ∈
{0.5, 1, 2, 4} and the set of all negative videos. In HCRF (σ,n)

bag ,
40 HCRFs are combined where each one uses σ ∈ {0.5, 1, 2, 4}
and a set of randomly sampled 1, 000 negative videos. In
both of HCRF (σ)

bag and HCRF (σ,n)
bag , for each test video x, the

sum of P (y = 1|x, θ∗)s by different HCRFs, is used as the
final relevance score to the event.
Table 4 shows the performance comparison between the

above bagging approaches, and HCRF in Figure 6 where the
best σ is manually selected. In Table 4, APs in bold font
indicate that HCRF (σ)

bag or HCRF (σ,n)
bag outperforms HCRF .

Overall, as seen from the column MAP, both of HCRF (σ)
bag

and HCRF (σ,n)
bag are more accurate than HCRF . Randomisa-

tion test indicates that HCRF (σ,n)
bag outperforms HCRF with

the significance level of 8%, and there is no significant differ-
ence between HCRF (σ)

bag and HCRF . The important finding
here is that bagging leads to results which are the same or
superior to the one obtained by manual.
Furthermore, Table 4 presents different characteristics of

HCRF (σ)
bag and HCRF (σ,n)

bag . Except E009, HCRF (σ)
bag yields

great improvement on E008, E013 and E014, while its per-
formance is similar to HCRF on the other events. Thus,
bagging with different σs and all negative videos, works quite
well on some events. On the other hand, HCRF (σ,n)

bag pro-
vides modest improvement on most events, but it is signif-
icantly degraded on some events like E008 and E014, due
to insufficient negative videos used to build each HCRF.
Hence, HCRF (σ)

bag and HCRF (σ,n)
bag can be considered as com-

plementary. One interesting research topic is how to select
the best bagging strategy depending on events. If the best
of HCRF (σ)

bag and HCRF (σ,n)
bag could be correctly selected for

each event in Table 4, the MAP would become 0.131.

5. CONCLUSION AND FUTURE WORK
In this paper, we addressed weakly supervised setting and

unclear event structures, and introduced a method using
HCRFs. In an HCRF, hidden states are used as an inter-
mediate layer, which characterises shots relevant (or irrele-
vant) to an event, and their temporal relation. These hidden



Table 4: Performance comparison among HCRF ,
HCRF (σ)

bag and HCRF (σ,n)
bag .

E006 E007 E008 E009 E010 E011
HCRF 0.062 0.063 0.231 0.128 0.036 0.035
HCRF (σ)

bag 0.065 0.050 0.262 0.072 0.032 0.041
HCRF (σ,n)

bag 0.096 0.083 0.200 0.137 0.031 0.060
E012 E013 E014 E015 MAP

HCRF 0.106 0.174 0.179 0.026 0.104
HCRF (σ)

bag 0.098 0.251 0.206 0.023 0.110
HCRF (σ,n)

bag 0.160 0.220 0.162 0.029 0.118

states are probabilistically optimised so as to discriminate
between positive and negative videos. Experimental results
showed that HCRFs are effective for weakly supervised set-
ting, and reasonably capture unclear event structures.
In addition to future works described in Section 4, we will

address the following two issues: The first one is that al-
though each hidden state currently uses linear combination
of concept detection scores in the potential function, its dis-
criminative power is not so strong. Thus, we will replace
linear combination with a kernel-like combination where for
each shot in a video, its similarity to every shot in training
videos is weighted and summed up. In other words, weights
for such similarities are parameters to be optimised in an
HCRF. However, this causes significant increase of param-
eters and requires expensive computational cost. Thus, the
second issue is to parallelise the HCRF training process us-
ing several processors.
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