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Abstract Multimedia Event Detection (MED) is the

task to identify videos in which a certain event occurs.

This paper addresses two problems in MED: weakly su-

pervised setting and unclear event structure. The first
indicates that since associations of shots with the event

are laborious and incur annotator’s subjectivity, train-

ing videos are loosely annotated as whether the event is
contained or not. It is unknown which shots are relevant

or irrelevant to the event. The second problem is the dif-

ficulty of assuming the event structure in advance, due
to arbitrary camera and editing techniques. To tackle

these problems, we propose a method using a Hidden

Conditional Random Field (HCRF) which is a prob-

abilistic discriminative classifier with a set of hidden
states. We consider that the weakly supervised setting

can be handled using hidden states as the intermediate

layer to discriminate between relevant and irrelevant
shots to the event. In addition, an unclear structure of

the event can be exposed by features of each hidden

state and its relation to the other states. Based on the
above idea, we optimise hidden states and their rela-

tion so as to distinguish training videos containing the

event from the others. Also, to exploit the full potential

of HCRFs, we establish approaches for training video
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preparation, parameter initialisation and fusion of mul-

tiple HCRFs. Experimental results on TRECVID video

data validate the effectiveness of our method.
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conditional random fields · Weakly supervised setting ·
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1 Introduction

With the explosive growth of video data on the Web, it

is necessary to develop methods which analyse a large

number of videos based on automatically extractable
features, and accurately retrieve the ones of interest.

As a result of the recent research progress, accurate re-

trieval has been possible in terms of some objects, ac-
tions and scenes (e.g., car, running and outdoor) [27].

However, these meanings are too general, and thus im-

practical, as to identify videos users want to watch. This
paper deals withMultimedia Event Detection (MED) to

identify videos in which a particular event occurs. The

event is a high-level meaning defined as a complex ac-

tivity of objects at a specific place and time [25]. Such
events are much more useful for practical applications

than general meanings addressed before.

Let us consider how an event is presented in videos.

Figure 1 shows two videos where the event “birthday

party” occurs. The simplest presentation of an event
is to use a long take shot which continuously follows

objects related to the event. For example, Video 1 in

Figure 1 is made of a single shot that tracks the whole

series of bringing the birthday cake to the table and
blowing out candles. However, the screen can only cap-

ture a spatially limited part of an event, and the time

duration of a video is limited. Consequently, a single
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Video 1 Video 2
(Shot 1) (Shot 2) (Shot 3) (Shot 4)(Shot 1)

Fig. 1 Example videos containing the event “birthday
party”.

shot is often ineffective and inefficient to capture move-

ments and interactions of multiple objects. Thus, edit-

ing is employed where shots showing key moments are
connected to present the event in a compact form [3].

In Figure 1, Video 2 consists of four shots which show

chatting before the birthday party (Shot 1), bringing
the cake (Shot 2), eating it (Shot 3) and playing after

the party (Shot 4). Therefore, MED requires to consider

shots in a video as well as their relation.

This paper addresses two problems in MED described

below:

(1) Weakly supervised setting: MED can be formu-
lated as a binary classification problem where a classi-

fier is constructed to distinguish videos showing one

event from the remaining ones. However, the classifier
has to be constructed under the weakly supervised set-

ting where each training video is annotated only with

the occurrence or absence of the event, despite the fact

that this video may include several semantically differ-
ent shots. The weakly supervised setting arises due to

the following two reasons: First, it is labour-intensive to

annotate each shot contained in a video. Second, videos
are ‘continuous media’ where semantic meanings are

continuously conveyed as video frames and audio sam-

ples are played over time [10]. Because of this temporal
continuity of meanings, any segment of a video can be-

come a meaningful unit [30].

More concretely, humans usually tend to relate each

shot in a video to surrounding ones. For example, in

Video 2 in Figure 1, there is no doubt that Shot 2 and
3 show the birthday party. Based on this knowledge, one

can deduce that Shot 1 and 4 are related to the party,

as chatting before and playing after “cake eating”. This

kind of shot relation makes it ambiguous to determine
the boundary of an event. For Video 2, one may think

that the birthday party is shown only in Shot 2 and 3,

while someone else may think that it is shown during
the whole of the video, by regarding Shot 1 and 4 as

parts of the party based on the shot relation described

above. Thus, objective annotation is only possible at
the video level in terms of whether each video contains

the event or not. No annotation is provided for shots.

We call videos annotated with an event’s occurrence

and its absence positive videos and negative videos, re-

spectively. For example, Video 1 and 2 in Figure 1 are

positive videos for the event “birthday party”. It is no-

table that due to the weakly supervised setting, posi-
tive videos contain many shots that are irrelevant to the

event. For example, Shot 1 and 4 in Video 2 are irrel-

evant because nothing related to the birthday party is
displayed. Furthermore, shots similar to them are often

observed in videos showing events other than “birth-

day party”. Hence, to build an accurate classifier under
the weakly supervised setting, we need to discriminate

between relevant and irrelevant shots to an event.

(2) Unclear event structures: An event is a mean-
ing specialised by the combination of objects, actions

and scenes. In other words, the same object, action

or scene is related to different events. Thus, relations
among objects, actions and scenes are needed to spe-

cialise meanings presented in a video. We define the fol-

lowing two types of relations as event structures. The

first type specialises meanings within a shot. For ex-
ample, only with the appearance of food in a shot, it

cannot be judged whether it is for eating or cooking.

But, if the shot shows a dinning room, the food can be
regarded as for eating. The second type of event struc-

ture specialises meanings over a shot sequence. This is

attributed to editing that produces a new meaning by
connecting multiple shots [3]. For example, the action of

eating is common to many parties. But, if a shot show-

ing a birthday cake is followed by a shot where a person

eats something, it can be interpreted that these shots
belong to a birthday party. Like this, event structures

work as constraints to precisely examine the occurrence

of an event in a video.

However, we target real-world videos created by non-

professional users. Such videos are ‘unconstrained’ [14]

where shots can be taken by arbitrary camera tech-
niques and in arbitrary shooting environments, and what

is more, they can be concatenated by arbitrary edit-

ing techniques. As a result, appearances of objects, ac-
tions and scenes vary greatly, and shots are connected

in different orders. Thus, event structures are ‘unclear’

in the sense that they cannot be assumed in advance.
Hence, by analysing training videos, we need to statis-

tically mine characteristic shots that are relevant (or

irrelevant) to an event, and their temporal relation. It

should be noted that we aim to extract event structures
under the weakly supervised setting, where only the

video level annotation is available and no shot is anno-

tated. Thus, the extraction of event structures requires
to solve the weakly supervised setting at the same time.

To jointly address these problems, we use a Hidden

Conditional Random Field (HCRF) which is a prob-
abilistic discriminative classifier with a set of hidden

states [21]. For the weakly supervised setting, we in-

directly associate a video with an event, using hidden
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states as the intermediate layer to discriminate between

relevant and irrelevant shots. In addition, each hidden
state represents characteristic features and has the rela-

tion to the other states. We use such hidden states and

their relation to characterise the structure of the event.
Based on the above idea, we devise an HCRF which

detects the event in a video by assigning each shot to a

hidden state. This assignment is controlled by not only
matching features of each shot with the ones of a hid-

den state, but also considering the relation (transitions)

among hidden states. Then, the event’s occurrence in

the video is predicted by collecting relevance values of
assigned hidden states. Thus, the weakly supervised set-

ting and unclear event structure can be jointly handled

by optimising hidden states (i.e., their features and rel-
evance values) and the relation among them, so as to

discriminate between positive and negative videos for

the event.
Finally, we need to investigate several issues to train

effective HCRFs. First, although negative videos need

to cover various kinds of videos, it is unknown whether

an HCRF can be appropriately trained on the biased set
of training videos, where the number of negative videos

is much larger than that of positive ones. We experi-

mentally show that the performance of HCRFs is stable
in terms of the number of negative videos (even through

some of them are very similar to positive videos). Sec-

ond, since the optimisation of an HCRF has many local
maxima, it is necessary to properly initialise parame-

ters which define hidden states and their relation. We

develop a parameter initialisation method based on the

distribution of shots and their connections in training
videos. Third, the performance of HCRFs is unstable

depending on the hyperparameter (regularisation pa-

rameter). Instead of choosing the best one, we devise
a method which improves the performance by fusing

unstable results. Based on the above investigation, we

validate the effectiveness of HCRFs for the weakly su-
pervised setting and unclear event structures.

2 Related Work

MED is one of the tasks established in TRECVID which
is an annual worldwide competition on video analysis

and retrieval [25]. MED started with TRECVID 2011

and many methods have been developed so far [1, 7, 13,
18]. However, most of them adopt the same approach as

traditional shot retrieval. With respect to this, a shot

is a basic unit which captures coherent meanings, in

the sense that these are spatially and temporally con-
tinuous [8]. On the other hand, a video is a sequence

of shots containing varied meanings. Despite this in-

trinsic difference between a shot and a video, most of

the existing methods employ the traditional shot re-

trieval approach. Here, features extracted from shots in
a video are aggregated into a ‘video-level’ vector, which

represents overall meanings in the video. Based on this,

classifiers used for traditional shot retrieval (typically
Support Vector Machine (SVM)) are built.

A video-level vector is usually obtained by max-

pooling [7, 18] or average-pooling [1], which takes the

maximum or the average feature value over shots in

a video. In addition, feature-accumulation accumulates

features extracted from various spatio-temporal regions
in a video, and creates a vector which represents the

probability distribution of these features [13]. However,

video-level vectors are clearly too coarse, because max-
pooling may over-estimate values on features which are

irrelevant to an event, and average-pooling and feature-

accumulation may under-estimate the ones on relevant
features. Moreover, none of them can consider the tem-

poral relation among shots. In contrast to this view and

according to the sequential nature of videos, we repre-

sent each video as a sequence of vectors each express-
ing a shot. Then, using an HCRF, training videos are

abstracted into hidden states, which represent charac-

teristic features of shots relevant (or irrelevant) to an
event. And, the relation among hidden states captures

representative shot transitions in the event. Thus, our

method carries out more logical and precise modelling
of events than existing methods [1, 7, 13, 18]. We ex-

perimentally show that our method outperforms max-

pooling and average-pooling.

Recently, some researchers have proposed methods

which discriminate between relevant and irrelevant shots

(segments) to an event based on the latent SVM model
[16, 31]. A video is associated with latent (binary) vari-

ables, each of which indicates whether a shot is used to

compute the decision function. A latent SVM is trained
by iterating the following two processes: The first one

finds the configuration of latent variables (i.e., selection

of shots) which best match the current decision func-

tion, and the other updates parameters of this func-
tion by assuming that latent variables for each training

video are fixed. Notice that this method can handle

the weakly supervised setting but cannot extract event
structures, because it just selects relevant shots. Com-

pared to this, both of these problems can be managed

by HCRFs where hidden states show abstract repre-
sentations of relevant (or irrelevant) shots. Also, the

method in [29] uses Fisher kernel encoding to char-

acterise feature transitions over shot sequences in an

event. However, this cannot extract features represent-
ing characteristic shots for the event. In contrast, HCRFs

can extract event structures describing both of charac-

teristic features within shots and their transitions.
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Apart from MED, event structures are traditionally

captured by limiting the domain of videos. For example,
in baseball videos, the event “home run” is presented by

a shot sequence, where the first shot is taken behind the

pitcher, the second shot follows the ball, and the third
shot shows the batter running [2]. In movies, the con-

versation event is presented by a shot sequence, where

shots showing one person and those showing another
one are repeated one after another [37]. Thus, events

can be easily detected based on the above heuristics

which is implemented using pre-defined models, such

as Hidden Markov Models (HMMs) [2] or Finite State
Machines (FSMs) [37]. Compared to this, we target un-

constrained videos and aim to extract event structures

that cannot be assumed in advance.

In addition, HMMs (and other generative models) [2,

5] are ‘one-class’ classifiers which only maximise the

likelihood of positive videos without taking negative
videos into account. This means that the boundary

between videos in which an event occurs and the ir-

relevant videos is formed only by positive videos. In
other words, HMMs merely extract the region where

positive videos are densely populated. Thus, without

any heuristics described above, HMMs require a large
number of positive videos to accurately define the re-

gion that covers videos containing the event. Since an

event is a highly-specialised meaning, videos contain-

ing it are rare, so collecting many positive videos is
difficult. Compared to HMMs, HCRFs are ‘two-class’

classifiers which maximise the discrimination between

positive and negative videos. This enables us to effec-
tively define the boundary between videos containing

the event and the others. Many publications report that

two-class classifiers are considerably superior to one-
class classifiers like HMMs [17, 36].

Our preliminary experiment showed that the per-

formance of HMMs built on positive videos is quite
poor, and significantly improved by additionally using

HMMs built on negative videos. Since negative videos

include all kinds of videos except for positive ones, an
HMM built on them works as a prior distribution rep-

resenting how features in shots and shot transitions are

distributed in the general case. Thus, we can exam-

ine how much a video is biased to the region where
positive videos are populated, by computing the dif-

ference between the probability obtained by an HMM

built on positive videos and the one by the HMM on
negative ones. A similar approach is popularly used in

speaker adaptation in audio recognition [35]. Even with

the above improvement, in Section 4.2, we demonstrate
that HCRFs significantly outperform HMMs.

Furthermore, although HMMs can extract event struc-

tures represented by hidden states, they have no mech-

anism to discriminate between relevant and irrelevant

shots to an event, that is, all shots in positive videos are
assumed as relevant. Thus, HMMs are not suitable for

the weakly supervised setting, because extracted event

structures are significantly affected by irrelevant shots
contained in positive videos. In contrast, HCRFs can

characterise event structures by discriminating between

relevant and irrelevant shots. In Section 4.3, we exhibit
that, even in the weakly supervised setting, meaningful

event structures can be extracted by HCRFs.

Existing methods that are closely related to ours

are event detection using Conditional Random Fields

(CRFs) [33, 34]. A CRF, which forms the basis of an
HCRF, is a probabilistic discriminative classifier for la-

belling elements in a sequence [15]. Wang et al. used

a CRF to label whether each shot in a video shows
a highlight or not [33]. Also, targeting a network con-

sisting of many sensors, Yin et al. used a CRF to an-

notate whether the recording of each sensor at every

time point indicates the occurrence of an event [34].
Although CRFs can extract event structures, they aim

to classify elements in a sequence (i.e., shots in a video).

In other words, CRFs require training videos where
each shot is annotated with an event’s occurrence or

absence, and cannot be used in the weakly supervised

setting. Compared to this, HCRFs can handle this by
performing CRF’s shot labelling on hidden states, and

combining labelling results to estimate the label of the

entire video.

Finally, HCRFs have been successfully used in dif-

ferent applications such as object classification [21], ac-
tion (gesture) recognition [32, 38], and audio analy-

sis [11]. But, to the best of our knowledge, this paper

describes the first application of HCRFs to MED. Be-

cause of this, in Section 4, we intensively investigate
approaches for training effective HCRFs in terms of

negative videos, parameter initialisation and hyperpa-

rameters (regularisation parameters).

3 Event Detection Method

This section presents our MED method using HCRFs.
Its overview is firstly provided. Then, we explain a pre-

processing method to recognise primitive meanings (con-

cepts) in shots. An event is characterised by combining
these meanings. Finally, we describe an event detection

method based on HCRFs.

3.1 Overview

An event is ‘highly-abstracted’ in the sense that vari-

ous objects interact with each other in different situa-
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Fig. 2 An overview of our MED method where “birthday party” is used as an example event.

tions. In consequence, visual appearances of shots rele-
vant to a certain event can be completely different. In

other words, the set of these shots has got a huge vari-

ance in the space of low-level features like colour, edge,
and motion. Hence, we adopt a concept-based approach

which projects a shot into the space where each dimen-

sion represents the detection result of a concept [27].
Here, concepts are textual descriptions of meanings that

can be observed from shots, such as objects like Per-

son and Car, actions like Walking and Airplane Flying,

and scenes like Beach and Nighttime. In what follows,
we denote concept names in italics to distinguish them

from the other terms.

Owing to recent research progress, several concepts

can be robustly detected irrespective of their sizes, di-
rections and deformations in video frames. Thus, com-

pared to the space of low-level features where each di-

mension just represents the physical value of a shot,
in the space of concept detection results, each dimen-

sion represents the appearance of a human-perceivable

meaning. In such a space, the variation of relevant shots

to an event becomes smaller and can be modelled more
easily. That is, relevant shots that are dissimilar at the

level of low-level features, become more similar at the

level of concepts.

Figure 2 shows an overview of our concept-based
MED method. First, each video is divided into shots

using a simple method detecting a shot boundary as a

significant difference of colour histograms between two
consecutive video frames. In the bottom of Figure 2,

each shot is represented by one video frame, and ar-

ranged from front to back based on its shot ID. Then,

concept detection is conducted as a binary classifica-
tion problem. For each concept, a detector is built using

training shots, each annotated with its presence or ab-

sence. After that, the detector is used to associate every

shot with a detection score, representing a scoring value
between 0 and 1 in terms of the presence of the concept.

A larger detection score indicates more likelihood that

the concept is present in a shot.

Such detection scores are illustrated in the middle
of Figure 2. For example, the first shot in the leftmost

video shows an indoor scene where a person is bringing

a birthday cake. Correspondingly, this shot is associ-
ated with the large detection scores 0.9, 0.7 and 0.7 for

Person, Indoor and Food, respectively. Note that con-

cept detection is uncertain because small (or large) de-

tection scores for a concept may be falsely assigned to
shots where it is actually present (or absent). Nonethe-

less, we assume that representative concepts in shots

are successfully detected, and even if the detection of
a concept fails on some shots, its contribution to an

event can be appropriately evaluated by statistically

analysing shots in positive and negative videos. For ex-
ample, even though the shot exemplified above does not

display Crowd, a relatively large detection score 0.4 is

assigned to this shot. But, by checking the other shots

in positive videos, it can be revealed that Crowd is ir-
relevant to the event “birthday party”. Based on the

above concept detection, we represent each video as a

multi-dimensional sequence where each shot defined as
a vector of detection scores is temporally ordered, as

depicted in the middle of Figure 2.

Afterwards, an HCRF is trained using positive and

negative videos, where an event’s occurrence or absence
is annotated only at the video level (i.e., weakly super-

vised setting). Hidden states are probabilistically op-

timised so as to maximise the discrimination between

positive and negative videos. In an intuitive way, this
optimisation can be thought as searching concepts and

their relations which are typical for positive videos com-

pared to negative ones. For example, in Figure 2, pos-
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itive videos are more likely to contain shots with large

detection scores for Food than negative videos. This
leads a hidden state to favour the presence of Food with

a high relevance value to the event “birthday party”. In

addition, due to the habit that people eat a birthday
cake after candle blowing, positive videos often contain

a shot sequence where a shot showing Explosion Fire

is followed by a shot showing Food. This associates a
high relevance value with the transition between hidden

states that favour the presence of Explosion Fire and

the one of Food, respectively. Like this, hidden states

and state transitions for characterising relevant shots
to the event are extracted under the weakly supervised

setting. Meanwhile, event structures are characterised

by hidden states and state transitions with high rele-
vance values.

Finally, the trained HCRF is used to examine whether

shots in each test video match with optimised hidden

states and their transitions. As shown in the rightmost

of Figure 2, the matching result is obtained as the con-
ditional probability that the event occurs in the test

video. The sorted list of test videos based on such con-

ditional probabilities is returned as an MED result. Be-
low, we describe the concept detection process and the

HCRF training/test process.

3.2 Concept Detection

Our MED method characterises an event using appear-

ances of concepts. Thus, the vocabulary of concepts
should be sufficiently rich to describe various events.

We use Large-Scale Concept Ontology for Multimedia

(LSCOM) which is one of the most popular ontologies

in the field of multimedia retrieval [20]. LSCOM defines
a standardised set of 1, 000 concepts that are selected

based on their ‘utility’ for classifying content in videos,

their ‘coverage’ for responding to a variety of queries,
their ‘feasibility’ for automatic detection, and the ‘avail-

ability’ (observability) of large-scale training data.

To build an accurate detector of each concept, we

consider the following two issues: First, the concept ap-

pears in video frames with varied factors, such as its
directions and deformations, and lighting conditions. A

large number of training shots are required to cover

such diverse appearances of the concept. Second, the
concept does not necessarily appear in all video frames

in a shot, and regions where it appears significantly vary

depending on video frames. Hence, a feature needs to

characterise various regions in many video frames. Since
satisfying the listed issues requires expensive compu-

tational costs, we use the fast detector training/test

method and the fast feature exaction method based on

matrix operation [24]. The former realises batch com-

putation of similarities among many training shots, and
the latter allows batch computation of probability den-

sities related to many regions in a shot. These meth-

ods make detector training/test and feature extraction
about 10-37 and 5-7 times faster than the normal im-

plementation, respectively.

Thanks to these accelerating methods, concept de-
tection is conducted as follows (please refer to [24] for

more detail): First, regions that are likely to charac-

terise concept appearances, are sampled by applying

Harris-Affine region detector to every other video frame
in a shot. Subsequently, a Scale-Invariant Feature Trans-

form (SIFT) descriptor is computed to quantify the ap-

pearance of each sampled region. Then, hundreds of
thousands of SIFT descriptors obtained from the shot

are organised into the GMM-SuperVector (GMM-SV)

representation, which represents their distribution us-
ing a Gaussian Mixture Model (GMM). Finally, for

each concept, an SVM is constructed as a detector us-

ing 30, 000 training shots. Here, training shots are col-

lected from 545, 872 shots (27, 963 videos) used at the
TRECVID 2012 Semantic Indexing task [25], and the

corresponding annotation data [4]. In total, detectors

of 351 concepts are built because the annotation data
contain more than one shot where the presence of each

of these concepts is annotated.

3.3 Event Detection with HCRFs

Figure 3 illustrates an overview of an HCRF. It is im-

portant to note two different views of the HCRF. The

first is the model view in Figure 3 (a) where the struc-
ture of the HCRF is shown, and the other is the assign-

ment view in Figure 3 (b) where it is applied to a video.

On first glance, the structure of the HCRF in Figure 3
(a) may appear similar to that of an HMM, however,

because the HCRF is not a generative model but a dis-

criminative model, hidden states represent character-

istics of shots that are useful (or not-useful) for dis-
criminating between positive and negative videos for

an event. Such useful and not-useful shots are relevant

and irrelevant shots to the event, respectively.
First, we define hidden states in an HCRF using the

model view in Figure 3 (a). Let y ∈ {0, 1} be the event

label where 0 and 1 mean an event’s absence and occur-
rence, respectively. And, H denotes the set of all hid-

den states. In Figure 3 (a), the HCRF has four hidden

states, so H = {h1, h2, h3, h4}. As depicted in Figure 3

(a), each hidden state hi (1 ≤ i ≤ |H|) has the follow-
ing three types of parameters: The first type is a ‘label

relevance’ θlabel(y, hi) representing the relevance of hi

to the event’s absence (y = 0) or occurrence (y = 1).
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Person: 0.9
Indoor: 0.7
Food:    0.3
Crowd: 0.2
...

Person: 0.9
Indoor: 0.5
Food:    0.6
Crowd: 0.0
...

Person: 0.8
Indoor: 0.7
Food:    0.2
Crowd: 0.4
...

y

x1 x2 xS

Multi-dimension
-al sequence

State sequence

Event label

a) Model view

h(x  )1 h(x  )2 h(x  )S

h1 h2

h3 h4

<Parameters of each hidden state h >i

b) Assignment view

         (h  ): Weight vectorweight i

       (y, h  , h  ): Transition
                           relevance
trans i j

       (y, h  ): Label relevancelabel i

Fig. 3 An illustration of our HCRF model.

Hence, if hi is assigned to a shot, θlabel(y, hi) is used

to represent the relevance (or irrelevance) of the shot

to the event. The second type of parameter is a ‘weight

vector’ θweight(hi) where each dimension indicates the
weight of one concept. This vector represents charac-

teristic concepts for hi, and is used to match a shot

with hi in terms of concept appearances. The last type
of parameter is a ‘transition relevance’ θtrans(y, hi, hj)

which represents the relevance of transition from hi to

hj conditioned on the event label y. When hi and hj

are assigned to two consecutive shots, θtrans(y, hi, hj)

examines whether this assignment is relevant in terms

of the event’s absence (y = 0) or occurrence (y = 1).

We explain how hidden states as defined above are

assigned to shots in a video by referring to the assign-

ment view in Figure 3 (b). Assuming that a video x is
represented as a multi-dimensional sequence of M con-

cept detection scores. That is, if x has S shots, x =

(x1,x2, . . . ,xS)
T
where the i-th shot xi (1 ≤ i ≤ S) is

represented as anM -dimensional vector (xi,1, . . . , xi,M )
T
,

and xi,c (1 ≤ c ≤ M) represents the c-th concept de-

tection score of xi. Under this condition, xi is assigned
to a hidden state h(xi) ∈ H. In Figure 3 (b), as de-

picted by dashed arrows from the model view, x1, x2

and xS are respectively assigned to h1, h3 and h4, that

is, h(x1) = h1, h(x2) = h3 and h(xS) = h4. Then, the
event label y is determined based on the sequence of

hidden states h(x) = (h(x1), · · · , h(xS))
T
for x.

Now let us evaluate the assignment of h(x) to x

by assuming the event’s occurrence (y = 1) or non-

occurrence (y = 0) in x. This is conducted by the fol-

lowing potential function Ψ(y,h(x),x;θ):

Ψ(y,h(x),x;θ) =
S∑

i=1

θlabel(y, h(xi)) (1)

+

S∑

i=1

xi · θweight(h(xi)) +

S∑

i=2

θtrans(y, h(xi−1), h(xi)),

where θ is the whole set of parameters, consisting of la-

bel relevances θlabel(y, hi)s, weight vectors θweight(hi)s

and transition relevances θtrans(y, hi, hj)s for all hidden
states. Equation (1) is based on the parameters of the

hidden state h(xi) assigned to the i-th shot xi. It is im-

portant to check the correspondence of a hidden state
between the assignment and model views. For example,

in Figure 3 (b), the first term of Equation (1) at S = 1

becomes θlabel(y, h1) because h(x1) in the assignment
view corresponds to h1 in the model view.

In Equation (1), Ψ(y,h(x),x;θ) combines the fol-

lowing three terms that evaluate h(x) from different

perspectives: The first term sums label relevances of
hidden states assigned to shots in x. This represents

the overall relevance of assigned hidden states to the

event’s occurrence (y = 1) or absence (y = 0). The
second term accumulates the product between concept

detection scores in xi and the weight vector of its as-

signed hidden state. This term indicates the overall de-
gree of how much shots in x match with assigned hid-

den states. The last term is the sum of transition rel-

evances between hidden states assigned to two consec-

utive shots, and represents how relevant the transition
of hidden states in x is to the event’s occurrence or ab-

sence. By assuming that h(x) is appropriately selected

for each training video, θ should be optimised so that
Ψ(y = 1,h(x),x;θ) is large for positive videos, while

for negative ones Ψ(y = 0,h(x),x;θ) is large.

Before implementing the optimisation process, we
provide an intuitive explanation about how optimised

hidden states contribute to managing the weakly super-

vised setting and extracting unclear event structures.

Hidden states are optimised so as to discriminate be-
tween positive and negative videos. This leads θweight(hi)s

of some hidden states to characterise concepts that ap-

pear in several shots in positive videos, but hardly ap-
pear in shots in negative ones. Accordingly, these states

are associated with large θlabel(y = 1, hi)s. In addition,

concepts that hardly appear in shots in positive videos,
are characterised by θweight(hi)s of some hidden states

with large θlabel(y = 0, hi)s. Thus, even in the weakly

supervised setting, the HCRF can discriminate between

relevant and irrelevant shots to an event using the above
hidden states. Also, θweight(hi)s of some hidden states

represent concepts that appear in shots in both positive

and negative videos. Such hidden states are assigned to
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shots, for which neither relevance nor irrelevance can be

determined. Meanwhile, event structures are captured
by hidden states with high θlabel(y = 1, hi)s and tran-

sitions with high θtrans(y = 1, hi, hj)s.

The optimisation of hidden states is based on the
following conditional probability of y given x:

P (y|x,θ) =
∑

∀h(x)∈H

P (y,h(x)|x,θ) (2)

=

∑
∀h(x)∈H

eΨ(y,h(x),x;θ)

∑
∀y′∈Y;∀h(x)∈H

eΨ(y′,h(x),x;θ)
. (3)

Equation (2) indicates that h(x) is marginalised out

by taking the sum of P (y,h(x)|x,θ)s over all possi-

ble instances of h(x) (i.e., all possible assignments of
hidden states to x). The reason for this is that since

hidden states cannot be observed, there is no direct as-

signment of shots to them. In other words, xi does not
necessarily match a single hidden state, but may match

multiple states. Thus, the above mentioned marginali-

sation offers the ‘soft-assignment’ where xi is assigned

to every hidden state based on the probability of this as-
signment [35]. Equation (2) is further transformed into

Equation (3), where the numerator with the fixed y is

normalised by the denominator taking the sum of nu-
merators with all y′ ∈ {0, 1}. Thus, Equation (3) can

be considered as a conditional probability.

Regarding the computation of P (y|x,θ), the numer-
ator and denominator in Equation (3) can be efficiently

computed by the ‘brief propagation’ algorithm [21]. Here,

for sequentially assigned hidden states like the ones in

Figure 3 (b), all possible assignments of hidden states
to x can be achieved by recursively accumulating all

possible transitions of hidden states between two con-

secutive shots.

Finally, the optimisation of hidden states is con-

ducted as follows: Suppose N training videos where

the j-th training video x
(j) (1 ≤ j ≤ N) consists of

Sj shots, that is, x(j) = (x
(j)
1 , . . . ,x

(j)
Sj

)
T
. In addition,

x
(j) is annotated with the event label y(j) = 1 if it is

positive, otherwise y(j) = 0. We estimate θ which max-

imises the following log-likelihood based on conditional

probabilities for x(j) and y(j):

L(θ) =

N∑

j=1

logP (y(j)|x(j),θ)−
||θ||2

2σ2
, (4)

where the second term is the L2 regularisation term and

useful for preventing θ from being overfit to training
videos. A smaller σ works as a stronger constraint which

inhibits parameters in θ to be extremely large. The op-

timal θ∗ is estimated by a gradient ascent method based

on the derivative of Equation (4) in terms of each pa-

rameter in θ [21]. Owing to the brief propagation algo-
rithm, this derivative can be efficiently computed.

After θ∗ is obtained, the relevance score of each test
video x to the event is computed as the conditional

probability of y = 1 for x, that is, P (y = 1|x,θ∗) based

on Equation (2). The sorted list of test videos in terms
of their relevance scores is returned as the MED result.

4 Experimental Results

Our MED method has been tested on video data pro-

vided in TRECVID 2013 MED task [25, 28]. We used

three datasets, EV consisting of 5, 472 videos (51, 857
shots), BG consisting of 4, 992 videos (32, 384 shots),

and TE consisting of 27, 033 videos (180, 219 shots).

For each event, an HCRF is trained using positive and

negative videos collected from EV and BG, and tested
on videos in TE. For reasons of simplicity, we call test

videos containing the event correct videos. The MED

result where test videos are ranked based on their rel-
evance scores to the event, is evaluated by an Average

Precision (AP). It is the average of precisions each of

which is computed by cutting off the ranking of test
videos at the position of a correct video. A larger AP

means a better result where correct videos are ranked at

higher positions. In addition, we use the Mean of APs

(MAP) over all events as an overall evaluation measure.

Furthermore, we conduct the ‘randomisation test’ to

check whether the performance difference between two
methods is statistically significant or not [26]. For each

event, APs of two methods are randomly swapped by

assuming that there is no significant performance dif-
ference (null hypothesis). This produces a large number

of pairs of MAPs for two methods. By referring to MAP

differences for these pairs, it is examined whether the
actual MAP difference is statistically unlikely or not.

The threshold (significance level) for deciding the un-

likelihood is set to 5% based on the usage of the ran-

domisation test in TRECVID [25].

Table 1 summarises 10 events addressed in our ex-

periments. The ID and description of each event are
shown in the first and second columns, respectively. The

third column indicates the average number of shots in

positive videos. Note that all shots used to compute this
average are not relevant to the event. Recall the weakly

supervised setting where training videos are only la-

belled as whether an event is contained or not, and it is

unknown which shots are relevant or irrelevant to the
event. One of our main purposes is to examine the per-

formance of HCRFs under the weakly supervised set-

ting. Another main purpose is to investigate whether
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Table 1 Events addressed in our experiments.

Avr. # # of cor-

ID Event Description of shots rect videos

E006 Birthday party 10.69 186

E007 Changing a vehicle tire 10.32 111

E008 Flash mob gathering 25.12 132

E009 Getting a vehicle unstuck 5.38 95

E010 Grooming an animal 5.10 87

E011 Making a sandwich 14.06 140

E012 Parade 9.34 234

E013 Parkour 20.06 104

E014 Repairing an appliance 10.72 78

E015 Working on a sewing project 9.51 81

structures of events listed in Table 1 can be success-
fully extracted under the weakly supervised setting.

The forth column in Table 1 represents the number
of correct videos. Here, 10 events other than those in Ta-

ble 1 are also available. However, since numbers of cor-

rect videos for these events are too small (less than 33),
we recognised that they are insufficient to examine the

generality of whether correct videos with diverse visual

appearances can be identified or not. In addition, APs
are unstable for such small numbers of correct videos,

because small changes of positions where correct videos

are ranked, considerably affect averaging precisions at

these positions. Thus, we only use 10 events in Table 1.

4.1 Tuning HCRFs

We set up HCRFs that will be compared to other meth-

ods and closely investigated after this section. In par-

ticular, we study conditions to train effective HCRFs,

that is, what kind of negative videos should be used,
and how to initialise parameters to be optimised.

4.1.1 Negative videos

According to the official instruction of the TRECVID
MED task, for each event, 100 positive videos are col-

lected from EV. Also, videos in BG have been proven

to not-contain the event, so they are used as negative.
Moreover, EV includes ‘near-miss’ videos which are vi-

sually similar to positive videos, but do not contain

the event. Figure 4 depicts two examples of near-miss
videos for the event “birthday party”. Video 1 only

shows a cake, and Video 2 shows a man cooking cakes

for a party. We firstly assumed that the performance

will get degraded using near-miss videos as negative.
The reason is that many correct videos may be missed,

because they may be similar to near-miss videos, and

regarded as not-containing the event.

Video 1
(Shot 1)

Video 2
(Shot 1) (Shot 2) (Shot 3) (Shot 4)

Fig. 4 Examples of near-miss videos for “birthday party”.

To investigate the effect of near-miss videos, two

variants of HCRFs, HCRF and HCRF no-near, are com-

pared. For each event, HCRF constructs an HCRF us-
ing negative videos consisting of videos in BG and near-

miss videos, while HCRF no-near only uses videos in BG

as negative. Except for this, the condition is the same
between HCRF and HCRF no-near. Specifically, 100 pos-

itive videos are collected from EV. In addition, 10 hid-

den states are used, and due to the computational cost
the maximum number of iterations for estimating θ

∗ is

set to 50. Initial parameters for θ
∗ are determined by

the parameter initialisation method described in the

next section. It should be noted that the performance
of an HCRF significantly depends on the parameter σ

for L2 regularisation. Regarding this, we test each of

σ ∈ {0.5, 1, 2, 4} and select the one achieving the best
performance. This aims to avoid under-estimating the

performance of the HCRF. One solution for the σ se-

lection will be presented in Section 4.4.

Table 2 shows the performance comparison between

HCRF and HCRF no-near. Each row presents APs for

10 events and the MAP over them. As can be seen
from Table 2, the performance of HCRF is better than

that of HCRF no-near. However, this statement is only

valid at the significance level of 10% in the randomi-

sation test. Nonetheless, the performance improvement
using near-miss videos for E007, E008, E009, E012 and

E014, seems much larger than the degradation without

using near-miss videos for the other events. In other
words, the advantage of using near-miss videos as neg-

ative seems to suppress its disadvantage. Thus, we use

near-miss videos in the following experiments.

It should be noted that the above HCRFs have been

trained using 100 positive videos and more than 4, 000

negative videos. This setting may cause the imbalanced

problem which makes it difficult to build a well-generalised

HCRF [12]. Suppose that the number of negative videos

(majority class) is much higher than that of positive

ones (minority class). In this case, an HCRF which clas-
sifies almost all videos as negative may be constructed,

because it can very accurately classify training videos

containing the large number of negative ones.

We elaborate the effect of the imbalanced problem

by comparing HCRF described above toHCRF sub built

using a subset of negative videos, especially, randomly
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Table 2 Performance comparison between HCRF and HCRFno-near.

E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 MAP

HCRF 0.0622 0.063 0.2317 0.1282 0.0369 0.0352 0.1062 0.1741 0.1797 0.0262 0.1043

HCRFno-near 0.0717 0.0428 0.1954 0.1019 0.0476 0.0385 0.0929 0.1918 0.111 0.0224 0.0916

Table 3 Performance comparison between HCRF and HCRF sub.

E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 MAP

HCRF 0.0622 0.063 0.2317 0.1282 0.0369 0.0352 0.1062 0.1741 0.1797 0.0262 0.1043

HCRF sub 0.0788 0.0627 0.1845 0.0930 0.0422 0.0544 0.1354 0.1502 0.0919 0.0273 0.0920

(Std. dev.) ±0.0058 ±0.0092 ±0.0115 ±0.0151 ±0.0069 ±0.0075 ±0.0147 ±0.0124 ±0.0195 ±0.0080

(Max) 0.0907 0.0754 0.2017 0.1191 0.0538 0.0709 0.1534 0.1790 0.1328 0.0467

(Min) 0.0699 0.0484 0.1670 0.0649 0.0320 0.0435 0.0975 0.1353 0.0686 0.0194

sampled 1, 000 negative videos. Table 3 shows the per-

formance comparison between HCRF and HCRF sub.
Considering the randomness of negative videos, for each

event, HCRF sub is run 10 times using different sets of

negative videos. The row denoted by HCRF sub presents

the average of APs over 10 runs, and the MAP based on
such averages for 10 events. The last three rows under

this represent the standard deviation, maximum and

minimum of APs in 10 runs.

The randomisation test states no significant perfor-

mance difference between HCRF and HCRF sub. This
means that the imbalanced problem has no strong influ-

ence on the performance of HCRFs. In addition, as can

be seen from Table 3, APs of HCRF sub considerably

vary depending on negative videos. To avoid this vari-
ance and explicitly evaluate the effectiveness of HCRFs,

we conduct the following experiments using all nega-

tive videos. Also, in Section 4.4, we will discuss how to
utilise varied results with different negative videos for

the performance improvement.

4.1.2 Parameter initialisation

Since the objective function in Equation (4) has many
local maxima, setting a proper initial θ is crucial for

building an HCRF with an effective θ
∗. For this, we

borrow the idea of initialisation used in HMMs [35].
First, an initial θ is determined based on the ‘hard-

assignment’ of hidden states to shots. Here, θ is ini-

tialised only using the maximum likelihood sequence

of hidden states for each training video. Then, the ini-
tial θ is refined to θ

∗ by the ‘soft-assignment’ where

all possible sequences of hidden states are considered

based on Equation (2). Our method for θ initialisation
is summarised below.

First, for simplicity, each type of parameter consti-

tuting θ is symbolised as follows (please refer to the
model view in Figure 3 (a)): The set of label relevances

of all hidden states is represented by θlabel = {θlabel(y =

0, h1), · · · , θlabel(y = 1, h|H|)}, the set of weight vectors

of all hidden states is denoted by θweight = {θweight(h1),

· · · ,θweight(h|H|)}, and the one of transition relevances
is described as θtrans = {θtrans(y = 0, h1, h1), · · · , θtrans
(y = 1, h|H|, h|H|)}. Since hidden states are shared by

all shots, it is reasonable to initialise θweight so as to

characterise their distribution. Thus, shots are grouped
into the same number of clusters to that of hidden

states. Because training videos for each event contain

more than 32, 000 shots, a fast clustering method [9]
is used. The weight vector of the i-th hidden state

θweight(hi) is initialised using shots in the i-th cluster.

To initialise θweight in a similar way to an HCRF 1,

we construct a CRF that is a probabilistic model to
predict the label of each element in a sequence [15].

For convenience, we call such labels elemental labels.

The structure of the CRF is equivalent to that of the

HCRF without the event label layer. In other words,
the HCRF is an extension of the CRF where elemen-

tal labels are made hidden states to predict the label

of the entire sequence. Thus, parameters characterising
elemental labels in the CRF correspond to θweight in the

HCRF. Hence, we optimise the CRF by regarding the

cluster index of each shot as its elemental label, and use
optimised parameters characterising elemental labels as

initial θweight. Note that although the optimisation of

the CRF is similar to that of the HCRF, optimised

parameters in the CRF are guaranteed as global opti-
mum [15]. Thus, unlike the HCRF, we do not have to

care initial parameters of the CRF.

In addition, using the optimised CRF, we compute

the maximum likelihood sequence of elemental labels
for each training video, and regard it as an assign-

ment of hidden states. By only considering such an as-

signment for every training video, we initialise θlabel

1 It is not reasonable to initialise θweight(hi) as the centre
of the i-th cluster because of the difference of value ranges.
While θweight(hi) take both positive and negative values, the
cluster centre does not take negative ones because concept
detection scores lie between 0 and 1.
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Table 4 Performance comparison between HCRF and HCRF rand.

E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 MAP

HCRF 0.0622 0.063 0.2317 0.1282 0.0369 0.0352 0.1062 0.1741 0.1797 0.0262 0.1043

HCRF rand 0.0606 0.0403 0.2043 0.0710 0.0377 0.0434 0.1058 0.1822 0.1346 0.0249 0.0905

and θtrans in the HCRF framework. Here, P (y|x,θ) in

Equation (2) and (3) can be simplified as follows [38]:

P (y|x,θ) =
eΨ(y,hcrf (x),x;θ)

∑
∀y′∈Y

eΨ(y′,hcrf (x),x;θ)
, (5)

where for a training video x, hcrf(x) is the assignment

of hidden states obtained based on the optimised CRF.
According to this, the objective function in Equation

(4) can be decomposed as follows:

L(θ) =

N∑

j=1

Ψ(y(j),h
(j)
crf (x

(j)),x(j);θ)

−

N∑

j=1

log
∑

∀y′∈Y

eΨ(y′,h
(j)

crf
(x(j)),x(j);θ) −

||θ||2

2σ2
. (6)

As proven in [38], this objective function is convex. Ini-
tial θlabel and θtrans that are global optimum can be

obtained by a conventional gradient ascend method. Fi-

nally, θ consisting of θweight, θlabel and θtrans initialised
above, is refined to θ

∗ by the original HCRF optimisa-

tion in Equation (4).

We examine the effectiveness of this initialisation
method by comparing HCRF which uses this method,

to HCRF rand where θ is initialised with random val-

ues [21]. Table 4 presents their performance compar-

ison. Considering the variance in the performance of
HCRF rand, for each event, we run it 10 times using θ

initialised by different random values. The average APs

of these 10 runs is shown in the row for HCRF rand. Ta-
ble 4 demonstrates that HCRF outperforms HCRF rand,

which is statistically confirmed with the significance

level of 5%. In addition, on average, the objective func-
tion value using θ

∗ optimised by HCRF is 8.51% larger

than the one using θ
∗ optimised by HCRF rand. That

is, the former is better founded than the latter from the

computational perspective. Therefore, the above initial-
isation is useful for building effective and valid HCRFs.

4.2 Evaluation for the Weakly Supervised Setting

To examine the effectiveness of HCRFs under the weakly

supervised setting, we compare HCRF established in

the previous section to the following three methods:
1. SVM avr: As seen from Equation (1), hidden states

use linear combinations of concept detection scores. Thus,

SVM avr constructs a linear SVM where the decision

function linearly combines concept detection scores of

a video-level vector obtained by average-pooling. The
SVM parameter for penalising mis-classified training

videos has been heuristically set to 2. Using SVM avr,

we aim to examine the effectiveness of HCRF where

hidden states are used to precisely characterise events
based on shot-level vectors.

2. SVMmax: Similar to SVM avr, this constructs a linear
SVM based on video-level vectors by max-pooling.

3. HMM : HMMs are the most popular model to clas-
sify sequential data based on their structures, and have

several common characteristics to HCRFs. But, for each

event, an HMM can model structures only in positive
(or negative) videos where all shots are regarded as

relevant (or irrelevant). Hence, by comparing HMM

to HCRF , we aim to examine whether the latter can
appropriately discriminate between relevant and irrele-

vant shots to an event.

We construct HMM with the following configura-

tion using Hidden Markov Model Toolkit (HTK) [35]:

Like HCRF , HMM permits the transition between any

pair of hidden states (i.e., ergodic HMM). In addition,
as each hidden state in HCRF matches shots using

one function (i.e., xi · θweight(hi)), each state in HMM

uses a single mixture (normal distribution). Due to the
quadratic increase of parameters, each concept (dimen-

sion) is assumed to be independent of each other. More-

over, since a normal distribution involves the variance
in its denominator, concepts where the variance of de-

tection scores is too small (less than 10−6) are removed.

As a result, each shot is represented as a vector of de-

tection scores for 343 concepts. In the training process,
HMM prohibits any variance of each normal distribu-

tion to be less than 0.01. In the test process, using the

log-space forward algorithm [19], HMM computes the
log-probability that a test video is generated by the

trained HMM. That is, hidden states are marginalised

out like Equation (2).

Furthermore, HMM detects each event using two

types of HMMs, HMM pos and HMM neg, each type is
built on positive or negative videos (please refer to Sec-

tion 2 for the rationale of HMM neg). The relevance

score of a test video to the event is determined by sub-

tracting the log-probability by HMM neg from the one
by HMM pos. In particular, the best number of hidden

states is unknown for HMM pos and HMM neg. Thus, we

build 15 variants of HMM pos and those of HMM neg,
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E006: Birthday party

E007: Changing a 
vehicle tire

E008: Flash mob
gathering

E009: Getting a
vehicle unstuck

E010: Grooming
an animal

E011: Making a
sandwich

E012: Parade

E013: Parkour

E014: Repairng
an appliance

E015: Working on
a sewing project

MAP

HCRF SVM avr SVM max HMM

0 0.05 0.1 0.15 0.2 0.25

Fig. 5 Performance comparison between HCRF , SVM avr,
SVMmax and HMM .

corresponding to using 1 to 15 hidden states. Then, by

testing all possible pairs of them, we select the best one.
This can be assumed as the upper-bound performance

of HMM . According to our preliminary experiment, the

above configuration has been confirmed as the best 2.

Figure 5 shows the performance comparison between
HCRF , SVM avr, SVMmax, and HMM . For each event

listed in the vertical direction, APs are depicted in the

horizontal direction where different marks are used de-
pending on methods. The bottom entry shows MAPs

over all 10 events. As can be seen from Figure 5, for 7

of 10 events, HCRF outperforms the other three meth-

ods. The randomisation test has confirmed that HCRF
is superior to SVM avr, SVMmax and HMM with the

significance level of 3%. The superiority of HCRF over

SVM avr and SVMmax validates the effectiveness of the
precise shot-level characterisation of events, and its su-

periority over HMM verifies that relevant and irrele-

vant shots to an event are appropriately distinguished.
Therefore, HCRFs are very effective for the weakly su-

pervised setting.

2 We also tested PCA to make each dimension (concept)
independent of each other, and the normalisation to obtain
uniformed dimensions with the mean zero and the variance
one. However, neither of them worked well. It can be consid-
ered that detection scores for each concept are appropriately
biased by the detector, so editing their distribution does not
offer improvement.
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Fig. 6 Performance transition using different numbers of
hidden states.

4.3 Evaluation for Extracting Unclear Event

Structures

We investigate the usefulness of HCRFs for extract-
ing unclear event structures. First, we compare per-

formances of HCRFs with different numbers of hidden

states. This aims to examine whether a larger number
of hidden states cover a larger diversity of shots rel-

evant (or irrelevant) to an event. Figure 6 shows the

transition of performances depending on different num-
bers of hidden states. As shown in the horizontal axis,

APs and MAPs obtained by 3, 5, 10 and 15 hidden

states are plotted. Here, except for the number of hid-

den states, each AP is obtained by the same config-
uration to that of HCRF in Section 4.1. Figure 6 in-

dicates that although the performance improvement is

relatively unclear at the event level, the overall perfor-
mance (i.e., MAPs plotted by the bold line) is gradually

improved using a larger number of hidden states. This

implies that a larger diversity of shots can be covered
using more hidden states. However, as exposed by the

randomisation test, the performance using 15 hidden

states is not statistically significant compared to the

one using 10 states. Thus, as the trade-off between the
performance and the computational cost, using 10 hid-

den states is considered reasonable.

Next, we check event structures extracted by HCRFs

in terms of shots characterised by hidden states. Table 5

shows two hidden states which characterise shots rele-
vant to E006, E009 or E013, as depicted by column

names. They are a part of 10 hidden states extracted

by HCRF in Figure 6. Each hidden state is represented
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Table 5 An Illustration of extracted hidden states which characterise relevant shots to E006, E009 and E013.

E006: Birthday party E009:Getting a vehicle unstuck E013:Parkour

θlabel(y, hi) y = 0:−0.396, y = 1:0.228 y = 0:−0.548, y = 1:0.293 y = 0:−0.101, y = 1:0.571

θweight(hi)

0.247 (Moonlight) 1.665 (Text On Artificial Background) 1.634 (Indoor)

0.204 (Nighttime) 1.421 (Waterscape Waterfront) 1.236 (Building)

0.192 (Entertainment) 1.342 (Head And Shoulder) 0.886 (Overlaid Text)

0.125 (Event) 1.316 (Car) 0.844 (Bridges)

0.121 (Singing) 1.208 (Infants) 0.768 (Graphic)

0.097 (Celebrity Entertainment) 1.112 (Outdoor) 0.727 (Door Opening)

0.093 (Dancing) 1.085 (Adult Male Human) 0.726 (Windows)

0.093 (Instrumental Musician) 1.081 (Daytime Outdoor) 0.654 (Animation Cartoon)

0.057 (Person) 1.065 (Driver) 0.631 (Legs)

0.056 (Face) 1.051 (Human Young Adult) 0.589 (Sky)

Example shots

(Candle blowing) (Stuck in water) (Jumping over buildings)

θlabel(y, hi) y = 0:−1.169, y = 1:0.470 y = 0:−2.645, y = 1:0.222 y = 0:−0.196, y = 1:0.005

θweight(hi)

1.157 (Outdoor) 2.412 (Ground Vehicles) 0.361 (Forest)

1.073 (Sofa) 2.157 (Vertebrate) 0.292 (Explosion Fire)

1.047 (Room) 2.093 (Road) 0.243 (Urban Park)

1.029 (Boy) 1.703 (Civilian Person) 0.239 (Trees)

1.011 (Female Person) 1.620 (Van) 0.207 (Plant)

0.997 (Two People) 1.597 (Face) 0.200 (Sunny)

0.968 (Dining Room) 1.542 (Human Young Adult) 0.184 (Vegetation)

0.941 (Girl) 1.517 (Swimming Pools) 0.154 (Building)

0.845 (Singing) 1.490 (Car) 0.152 (Suburban)

0.782 (Food) 1.395 (Singing) 0.150 (Throwing)

Example shots

(Chat in parties) (Vans are often stuck) (Parkour in forests/suburbs)

by a set of rows denoted by θlabel(y, hi), θweight(hi)

and “Example shots”. As can be seen from rows of

θlabel(y, hi), every hidden state has a higher label rel-

evance to an event’s occurrence than the relevance to
its non-occurrence (i.e., θlabel(y = 0, hi) < θlabel(y =

1, hi)). A row named as θweight show 10 concepts with

the highest weights, as represented by numbers on the
left of concept names. Examples of shots characterised

by such concepts are shown in rows of “Example shots”.

As can be seen from Table 5, hidden states appro-

priately represent characteristic shots for each event’s
occurrence. For example, upper hidden states for E006,

E009 and E013 can be considered to characterise shots

showing candle blowing scenes, scenes where cars are
stuck in water, and scenes where persons jump over

buildings, respectively. This means that HCRFs can ex-

tract descriptions of characteristic shots for an event,
under the weakly supervised setting where videos are

only annotated as whether the event is contained or not

(no shots are annotated). Thus, using HCRFs, we can

create a knowledge base storing such descriptions for
various events with reduced annotation effort. In addi-

tion, extracting human-perceivable event descriptions

under the weakly supervised setting, is difficult for ex-

isting MED methods such as linear SVMs on low-level

features [1, 18], non-linear SVMs [7, 13], SVMs with la-

tent variables [16, 31], and Fisher kernel encoding [29]

(see Section 2).

Now, we explore the temporal structures of events

by comparing HCRF to HCRF no. One may think that

since there are no clear temporal structures of events in
unconstrained videos created by arbitrary editing tech-

niques, it is meaningless to consider the relation be-

tween two consecutive shots based on transitions among
hidden states. Thus, HCRF no does not consider state

transitions by removing the term
∑

θtrans(y, h(xi−1),

h(xi)) from Equation (1). Table 6 shows the perfor-

mance comparison between HCRF and HCRF no, where
the former significantly outperforms the latter.

In particular, HCRF no frequently causes false pos-

itive detection. Many videos where an event does not
occur are falsely detected, only because they contain

shots that are similar to relevant shots to the event.

For example, for E006: Birthday party, falsely detected

videos just contain shots displaying children (many pos-
itive videos show birthday parties for children). For

E009: Getting a vehicle unstuck, shots in falsely de-

tected videos just show cars. Compared to this, HCRF
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Table 6 Performance comparison between HCRF and HCRFno.

E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 MAP

HCRF 0.0622 0.063 0.2317 0.1282 0.0369 0.0352 0.1062 0.1741 0.1797 0.0262 0.1043

HCRFno 0.0305 0.0406 0.0777 0.0612 0.0305 0.0211 0.1228 0.0268 0.0224 0.0133 0.0446

Table 7 Performance comparison among HCRF , HCRF
(σ)
bag and HCRF

(σ,n)
bag .

E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 MAP

HCRF 0.0622 0.063 0.2317 0.1282 0.0369 0.0352 0.1062 0.1741 0.1797 0.0262 0.1043

HCRF
(σ)
bag 0.0651 0.0509 0.2625 0.0726 0.032 0.0415 0.0984 0.2512 0.2064 0.0236 0.1104

HCRF
(σ,n)
bag 0.0969 0.0832 0.2006 0.1372 0.0318 0.0601 0.1604 0.2202 0.1625 0.0293 0.1182

indicates that for E006, shots where children appear

are often followed by shots containing Singing or Danc-

ing. In addition, for E009, shots displaying Car and

Road are not repeated, but tend to be followed by shots

showing Snow which causes stuck of Car. Thus, tran-
sitions among hidden states are effective constraints to

alleviate false positive detection. In other words, tem-

poral structures of events exist even in unconstrained

videos, and can be captured by transitions among hid-
den states. In Section 5, we will discuss how to extract

the longer relation of shots than the one between two

consecutive shots.

4.4 Bagging of HCRFs

In Section 4.1.1, we described two factors, σ and a

set of negative videos, which cause unstable results of

HCRFs. We acquired one finding on these results, where

correct videos are ranked at relatively high positions,
while incorrect ones are ranked at different positions.

Thus, rather than cross validation to select an effective

σ or set of negative videos, combining unstable results
is expected to improve the performance. Therefore, in

analogy with bagging which combines classification re-

sults obtained by different subsets of training data [6],
we combine results by different σs and different sets of

negative videos into a single result.

We have devised two bagging approaches, HCRF
(σ)
bag

and HCRF
(σ,n)
bag . For an event, HCRF

(σ)
bag combines re-

sults obtained by four HCRFs, each of which is built

using σ ∈ {0.5, 1, 2, 4} and the set of all negative videos.

In HCRF
(σ,n)
bag , 40 HCRFs are combined where each

one uses σ ∈ {0.5, 1, 2, 4} and a set of randomly sam-

pled 1, 000 negative videos. In both of HCRF
(σ)
bag and

HCRF
(σ,n)
bag , for each test video x, the sum of P (y =

1|x,θ∗)s obtained by different HCRFs, is simply used

as the final relevance score to the event.

Table 7 shows the performance comparison between

the bagging approaches, and HCRF in Section 4.1 where

the best σ is manually selected. In Table 7, APs in

bold font indicate that HCRF
(σ)
bag or HCRF

(σ,n)
bag outper-

forms HCRF . Overall, as seen from the column MAP,

both of HCRF
(σ)
bag and HCRF

(σ,n)
bag are more accurate

than HCRF . Although no significant performance dif-
ference among them is indicated by the randomisation

test (HCRF
(σ,n)
bag is superior to HCRF with the signif-

icance level of 8%), the important finding is that bag-

ging leads to similar or even superior results to the ones
obtained by manual.

Finally, Table 7 presents different characteristics of

HCRF
(σ)
bag and HCRF

(σ,n)
bag . Except E009,HCRF

(σ)
bag yields

great improvement on E008, E013 and E014, while its

performance is similar to that of HCRF on the other

events. Thus, bagging with different σs and all negative
videos, works quite well on some events. On the other

hand, HCRF
(σ,n)
bag offers modest improvement on most

events, but it is significantly degraded on some events

like E008 and E014, due to insufficient negative videos
to build each HCRF. Hence, HCRF

(σ)
bag and HCRF

(σ,n)
bag

can be considered as complementary. One interesting

research topic is how to select the best bagging strat-
egy depending on events. If the best of HCRF

(σ)
bag and

HCRF
(σ,n)
bag could be correctly selected for each event in

Table 7, the MAP would become 0.131.

5 Conclusion and Future Work

In this paper, we addressed the weakly supervised set-

ting and unclear event structures in MED, and intro-
duced a method using HCRFs. In an HCRF, hidden

states are used as the intermediate layer to examine

the relevance of each shot to an event. In addition,
each hidden state represents characteristic concepts and

has the relation to the other states. Such hidden states

are probabilistically optimised so as to discriminate be-

tween positive and negative videos for the event. As a
result, even in the weakly supervised setting, hidden

states appropriately distinguish relevant shots from ir-

relevant ones. Moreover, the event structure is captured
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by concepts specific to hidden states and their relation.

In the experiments, we have showed adequate tuning
of HCRFs, their effectiveness for the weakly supervised

setting and unclear event structures, and the improve-

ment using the bagging approach.

In the future, we will explore the following three is-

sues: First, in Table 5, while large weights are success-

fully assigned to concepts which are related to events,
they are also assigned to several not-related concepts,

such as Infants in the upper hidden state for E009, and

Animation Cartoon in the upper hidden state for E013.

One main reason is the current imperfect concept detec-
tion using only a single image feature (SIFT). Thus, we

will incorporate motion and audio features into concept

detection to improve its performance [24]. This will also
yield the improvement of the MED performance.

Second, based on the flexibility of the potential func-

tion in Equation (1), HCRFs can deal with long-range
dependencies among shots using an ‘window feature’ [32].

This represents each shot as the concatenation of con-

cept detection scores in the previous, current and next

shots. Thereby, the relation between two consecutive
shots can count shots that are separated by more than

one shot. Although we tested the window feature, the

MAP over the 10 events in Section 4 was 0.1000, which
has no significant difference to the MAP 0.1043 of HCRF

based on dependencies between two consecutive shots.

One main reason is that the temporal order of shots is
often corrupted by inserting shots, that display differ-

ent meanings than those of surrounding shots. Hence,

in order to incorporate long-range dependencies among

shots into HCRFs, we need to flexibly treat the dis-
torted order of shots.

To this end, we will examine the following two meth-

ods. The first one models the temporal continuity of
a concept’s presence based on time series segmenta-

tion [23]. A video is divided into shot sequences each

of which is characterised by a probabilistically distinct

pattern of the concept’s presence. As a result, the low
detection score for the concept in a shot is flexibly modi-

fied by considering the ones in surrounding shots. Then,

HCRFs are built using the above modified detection
scores. The second method is to represent a video as

a tree, where shots that are visually similar and tem-

porally close to each other, are gradually grouped into
nodes [22]. A node in the tree is represented by applying

the max-pooling (or average-pooling) to concept detec-

tion scores of shots in that node. After that, HCRFs are

trained where, in addition to the sequential video repre-
sentation used in this paper, the belief propagation al-

gorithm works for the above tree-structured video rep-

resentation to efficiently compute the conditional prob-

ability of an event’s occurrence or absence (Equation

(2)) [21].

Finally, the results in Section 4.3 (especially, Ta-

ble 5) indicate the possibility that meaningful event

structures can be extracted from unconstrained Web
videos. Thus, the last long-term issue is to build a knowl-

edge base about events. Various event structures ex-

tracted from a large amount of Web videos, may be
compared and structured using a pattern recognition

or data mining method.
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