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Abstract Recent Large-Scale Multimedia Retrieval (LSMR) methods seem
to heavily rely on analysing a large amount of data using high-performance
machines. This paper aims to warn this research trend. We advocate that
the above methods are useful only for recognising certain primitive meanings,
knowledge about human interpretation is necessary to derive high-level mean-
ings from primitive ones. We emphasise this by conducting a retrospective sur-
vey on machine-based methods which build classifiers based on features, and
human-based methods which exploit user annotation and interaction. Our sur-
vey reveals that due to prioritising the generality and scalability for large-scale
data, knowledge about human interpretation is left out by recent methods,
while it was fully used in classical methods. Thus, we defend the importance
of human-machine cooperation which incorporates the above knowledge into
LSMR. In particular, we define its three future directions (cognition-based,
ontology-based and adaptive learning) depending on types of knowledge, and
suggest to explore each direction by considering its relation to the others.

Keywords Large-scale multimedia retrieval · Human-machine cooperation ·

Machine-based methods · Human-based methods

1 Introduction

Confucius who is an ancient Chinese social philosopher, said “reviewing what
you have learned and learning anew, you are fit to be a teacher”. This means
an approach to discover new things based on the study of the past. In this
spirit, we conduct a retrospective survey on Large-Scale Multimedia Retrieval
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(LSMR) which has been receiving much research attention for more than
twenty years. LSMR is the technique for analysing a large amount of mul-
timedia data to efficiently find interesting and relevant ones. In other words,
LSMR can be regarded as a classification problem to discriminate between
relevant and irrelevant data to a query. As described in many literature [33,
118,122,126], the most challenging issue is the semantic gap which is the lack
of coincidence between automatically extractable features (e.g., colour, edge
and motion) and human-perceivable semantic meanings.

First of all, by referring to Fig. 1, let us define meanings that LSMR needs
to identify. Since events are widely-accepted access units to multimedia data,
we decompose semantic meanings based on basic aspects of event descrip-
tions [106,144]. As shown in Fig. 1 (a), we organise meanings using three
components, concept, event and context. By applying these to [106,144], con-
cepts form the participation (or informational) aspect of objects in an event.
That is, the event is derived by relating multiple concepts. Contexts are the
collection of part-of, causal and correlation aspects among events.

a) Organisation of
semantic meanings 

b) An example of organised semantic meanings

(Part-of)

Cooking a Hamburger

(Causal)

Eating the cooked Hamburger

Concept

Event

Context
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- Hand
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- Bread
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Time

Fig. 1 An illustration of decomposing meanings based on concepts, events and contexts.

More formally, we define concepts as textual descriptions of meanings that
can be perceived from images, shots or videos, such as objects like Person

and Car, actions like Walking and Airplane Flying, and scenes like Outdoor

and Nighttime. In other words, concepts are the most primitive meanings for
multimedia data, and used in many state-of-the-art retrieval systems [83,121].
Below, concept names are written in italics to distinguish them from the other
terms. An event is a higher-level meaning derived from the interaction of ob-
jects at a specific situation [52,116]. In our case, it is defined by the combi-
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nation of concepts. For example, in Fig. 1 (b), Shot 1 shows Cheese, Meat,
Sausage and Grill, from which the event “burning the first three things” is
derived. Shot 2 displays Hand, Food Turner, Bread, Cheese and so on, where
the event “putting Cheese etc. on Bread” is formed based on movements of
these concepts. Furthermore, as depicted by the bold line arrow in Fig. 1 (a),
contexts are used to recursively define higher-level events based on part-of,
causal and correlation relations among lower-level ones1. In Fig. 1 (b), based
on the part-of relation, events in Shot 1 and 2 are combined into the higher-
level event “cooking a Hamburger”. This event and the one in Shot 3 (“eating
a Hamburger”) are further abstracted into “eating the cooked Hamburger”.
Also, the correlation relation is used to connect two ‘weakly-related’ events,
such as those which occur in separate locations but at the same time [106].
We consider the above organisation of meanings based on concepts, events and
contexts as the final goal of LSMR.

To make the following discussions simple and clear, we adopt two policies:
First, we use an example to indicate a single unit of multimedia data, such
as image, shot, video and audio. When the discrimination among these data
formats is not important, we use examples as their abstract name. Second, by
drawing an analogy with Content-Based Image Retrieval (CBIR) in [29], we
define LSMR as any technology that, in principle, helps to organise a large-
scale multimedia data. Hence, LSMR in this paper includes technologies such
as object detection/recognition, image/video/audio classification, browsing,
summarisation and so on.

Our motivation for this survey paper is attributed to the fact that, the
current LSMR owes much to the availability of large-scale data and the en-
hancement of machine performance. The underlying framework remains the
classical machine learning approach. Roughly speaking, a classifier is built by
analysing training examples each annotated with the presence or absence of
a certain meaning. The former training examples, positive examples, serve as
representatives of examples relevant to the meaning, while the latter ones,
negative examples, represent irrelevant examples. Here, examples have signif-
icantly different visual appearances (features) depending on various chang-
ing factors (e.g., camera techniques and shooting environments). Thus, by
analysing a larger number of training examples with a high-performance ma-
chine, the classifier can accurately distinguish test examples relevant to the
meaning from the others irrespective of changing factors.

However, the success of the above machine learning approach does not
mean that, machines which are fed with a large number of training exam-
ples, learn a classifier the way humans do. This approach is only useful for
certain types of concepts (see Section 3.2). Furthermore, an event is derived
from the combination of concepts, and what is more, a context is composed
of multiple events. Hence, examples relevant to the event or context incur
much more diverse visual appearances than examples relevant to a concept.

1 In this paper, contexts only include relations which are obtained from multimedia data
themselves, and exclude external data like geo-tags and Web documents.
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Thus, the detection of the former requires much more training examples than
that of the latter. But, since events and contexts are very specific meanings,
collecting many training examples is impractical. Thus, knowledge about hu-
man interpretation of semantic meanings is necessary to derive events from
automatically detectable concepts, and further deduce contexts from events.
In other words, this knowledge is used to effectively cover the huge diversity
of visual appearances, connected to examples relevant to an event or context.
Therefore, this paper defends the importance of human-machine cooperation

approaches which enrich LSMR by knowledge about human interpretation.

2 Overview of Our Retrospective Survey

Our survey approach is significantly different from those of existing papers in
fields of multimedia retrieval and understanding. Most survey papers adopt a
progressive approach to derive future research directions from the progress of
component technologies. Recent papers [20,29,52,66,72,121] mainly reviewed
the following four component technologies, (1) feature extraction, representa-
tion and transformation methods, (2) retrieval methods based on knowledge
bases, machine learning techniques, similarities in terms of features, and data
mining methods, (3) user interaction methods such as query specification,
browsing (visualisation) and feedback, and (4) benchmark datasets for perfor-
mance evaluation. Then, the above papers suggest future problems that should
be further explored or should receive more attention, such as improvement of
component technologies, design of application-oriented (human-centric) inter-
faces, scalability with both high-performance computing and algorithm sophis-
tication, synergy between different modalities like text, image, video and audio,
and utilisation of user-generated Web data like tagged images and videos.

Compared to the existing papers, we conduct a survey in a retrospective ap-
proach. By tracing the progress of LSMR, we detect missing links from recent
approaches, which were addressed by classical approaches. Roughly speaking,
due to the large data size that is unmanageable by humans, researchers tend
to leave LSMR just to machines, where no knowledge about human interpre-
tation is used. Thus, we argue the importance of human-machine cooperation
which explicitly incorporates knowledge into machine-based approaches. In
other words, researchers have already established large-scale labelled exam-
ples from which we now need to extract knowledge and utilise it, in order to
achieve retrieval for high-level meanings. This means the ‘return’ to classical
approaches, but we also need to consider the much larger and more structured
knowledge in the future LSMR.

As depicted by the time axis in Fig. 2, we review existing LSMR methods
in chronological order. We classify them into three categories, machine-based,
human-based and human-machine cooperation. Machine-based LSMR does not
explicitly utilise knowledge about human interpretation. This category began
with syntactic methods using pre-defined templates of features based on spe-
cific camera and editing techniques in a particular video domain. In Fig. 2, we
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locate their starting point before 1995 by regarding one of the earliest method
by Zhang et al. in 1993 [162]. In Fig. 2, the italic term (i.e., Concept, Event
or Context) under a method name represents the level of meaning that can
be detected. We assume that according to the compositional relation in Fig. 1
(a), methods which can detect events (or contexts) have the capability to ex-
pose concepts (or concepts and events). Syntactic methods support retrieval
of events over shot sequences, such as goal events in football videos and con-
versation events in movies. However, syntactic methods lack the generality
because pre-defined templates are sensitive to changes in shooting environ-
ments and shot concatenations. Thus, since around 2000, the research focus
has shifted to machine learning methods which statistically build a classifier
using training examples. As discussed before, these methods are only effective
for concepts. As the effectiveness of using a large number of training exam-
ples together with high-dimensional features [28,84] became well-known, after
2005, researchers started to develop large-scale methods which improve the
scalability of machine learning ones.

Syntactic
Event

(Section 3.1)

Machine
learning
Concept

(Section 3.2)

Large-scale
Concept

(Section 3.3)

Manual
Context

(Section 4.1)

Web-based (Section 4.2)
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Interactive (Section 4.3)
Concept

Cognition-based
(Section 5.1)
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(Section 5.2)
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(Section 5.3)
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Fig. 2 Overview of our retrospective review of existing LSMR methods.

Human-based LSMR is supported by a human, but machine and human
are independent of each other. The earliest manual methods perform retrieval
based on manual annotation. In Fig. 2, their starting point is set before syn-
tactic ones, because multimedia retrieval was originally explored as a database
problem (e.g., [146]) where examples are manually indexed to flexibly respond
to queries of all levels of meanings. However, considering the labour for manual
annotation, from the early 2000s, Web-based methods have received attention
where users on the Web collaboratively annotate large-scale data [69]. Note
that annotation in such methods has to be done easily so that many users
can participate in it. In consequence, Web-based methods only support simple
concept-level retrieval. Meanwhile, human-based LSMR includes interactive

methods in which a human provides additional training examples based on
the current retrieval result, as represented by relevance feedback developed in
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the late 1990s [101]. Considering the practical use, feedbacks should be done
efficiently. Since it takes time to check shots or videos, interactive methods are
suitable for concepts where their presence or absence can be quickly judged
from single images. It should be noted that interactive methods do not af-
fect retrieval algorithms, but just provide additional data to tune parameters.
Compared to this, human-machine cooperation addresses the collaboration of
humans and machines at the algorithm level.

As can be seen from Fig. 2, although early methods supported retrieval
for high-level meanings (events and contexts), recent ones can only perform
concept-level retrieval because of preferring to the generality and scalability
for large-scale data, and the usability for users. Concepts are not so useful
for practical applications because they are too primitive (or general) to iden-
tify examples that users want to retrieve. Therefore, the future LSMR should
address the extraction of events and contexts while improving the concept
detection performance. Human-machine cooperation is promising to achieve
these goals and should deserve more attention. As shown in Fig. 2, we describe
three types of methods. First, cognition-based methods utilise knowledge about
human visual system. These aim to improve concept detection by implement-
ing the mechanism of how human brains process visual information. Second,
ontology-based methods make use of knowledge about human inference for
high-level meanings, in order to derive events and contexts from concepts. In
Fig. 2, we locate the starting points of the above methods from 2005, when the
importance of a standardised set of concepts became well-known [83]. Last,
adaptive leaning methods utilise knowledge about human learning, and adap-
tively control components of various retrieval algorithms. Thus, their role is
the auxiliary improvement of detecting all levels of meanings. We set the start-
ing point of adaptive learning to 2009, because, to the best of our knowledge,
one of the earliest methods was developed in [18]. We hope that the discussion
about the human-machine cooperation reminds researchers of the importance
of knowledge for interpreting semantic meanings.

3 Machine-based LSMR

In this section, we first describe classical syntactic methods and their dis-
advantages. Then, we review machine learning methods which overcome the
disadvantages of syntactic ones. Finally, recent works are presented where the
scalability of machine learning approaches is improved.

3.1 Syntactic Approaches

The easiest approach is to utilise prior knowledge about the structure (syn-
tax) of videos. This is only possible when the retrieval is limited in a specific
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genre of videos. For example, in news videos, an event2 that represents one
news topic starts with a shot where an anchor person appears, and ends with
another shot where the anchor person appears again [161,162]. In addition, an
interview event is characterised by a sequence of shots, where shots showing an
interviewer alternate with shots showing an interviewee [92]. To detect these
events, researchers first construct a graph where each node represents a group
of visually similar shots, and each edge represents the transition between two
groups of shots [92,161]. Events are then detected by extracting cycles which
are connected to the node of shots showing the anchor person.

In a sports video, an event corresponding to one move in a game starts with
a specific shot [164]. For example, in a baseball video, an event starts with a
shot taken behind the pitcher. And, when the batter hits out the ball, a camera
follows the flight of the ball in the next shot. In an American football video,
each play starts with the formation where players line up on two sides of the
ball. Also, goal events in ball game videos are characterised by a score change
on the score caption, followed by audience’s cheering and applause [168]. Based
on the above heuristics, each event is modelled using a pattern which repre-
sents a sequence of characteristic features [168], or a Hidden Markov Model
(HMM) [9]. Then, the event in an unknown video is detected by finding se-
quences of shots, which match the pattern or HMM.

Movie directors and editors use film grammar which consists of practical
rules to concentrate viewer’s attention on the story of a video [81]. For ex-
ample, thrilling events are presented with a fast transition of shots with very
short durations in order to emphasise the thrilling mood. On the other hand,
romantic events are created by concatenating shots with very long durations,
where person’s emotions and actions are thoroughly presented. In addition, a
conversation between two persons is displayed by alternating shots showing
the two persons one after another. Based on film grammar, conversation, sus-
pense and action events are extracted using sequential patterns [154] or Finite
State Machines (FSMs) [160]. Such a pattern or FSM represents a characteris-
tic sequence of features, such as shot duration, motion, audio, and repetition of
visually similar shots. Also, in [3], a tempo at which a viewer perceives mean-
ings (e.g., haste and calm) is computationally defined based on shot durations
and camera movements. Dramatic events are then detected by extracting grad-
ual and sharp changes of the tempo. Furthermore, violent events are detected
based on multiple heuristically defined features, such as motion, shot duration,
flame-colour, blood-colour and sudden increase in audio energy [82].

In a surveillance video recorded by a fixed camera, the background frame
can be defined as the one where no object appears. Based on this, the move-
ment of an object can be easily captured by computing the difference between
a video frame and the background frame. Thus, an event where an object
actively moves is detected as a sequence of video frames which have large dif-
ferences to the background frame [90]. Also, it is assumed that most events

2 Depending on literature, a sequence of shots that are coherent to a certain location,
action or theme, is named as a different term like scene [9,82,160], event [110,114,168], or
story section [3]. In this paper, such a sequence is called an event based on Fig. 1.
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taken by a surveillance camera are normal and anomalous ones are very rare.
Hence, by grouping video frames into clusters of similar frames, clusters in-
cluding a large number of frames and clusters including a small number of
frames represent normal and anomalous events, respectively [165].

The above syntactic methods can only process a limited number of a-priori
known queries. However, users issue a variety of queries which cannot be as-
sumed in advance. To overcome this, some research effort has been made on
video data mining where videos are analysed using data mining techniques that
extract previously unknown, interesting patterns in underlying data [110,114].
As a result, patterns for retrieving a variety of events can be extracted. Specifi-
cally, we developed a method which extracts sequential patterns for associating
adjacent shots related to a certain event [110]. Such sequential patterns are
extracted by connecting statistically correlated features in adjacent shots. In
addition, we also devised a method which extracts patterns for characterising
‘topics’ [114]. A topic is an event showing an interesting action like fighting,
chasing or kissing. It is assumed that topics are not presented by normal edit-
ing patterns but by abnormal patterns, because the latter ones have much
more impact on viewers than the former ones. In [114], a probabilistic time
series segmentation is developed to extract abnormal patterns, each of these
showing a certain person appearing in continuous shots with abnormally long
or short durations.

However, even using video data mining methods, it is practically impossible
to prepare all patterns which can respond to a variety of queries. In addition,
pre-specified patterns or retrieval models lack the generality because it is diffi-
cult to assume a diversity of camera and editing techniques, that can be used
to present an event. Thus, the research focus was shifted to a more general
and flexible approach, where a user represents a query by providing training
examples, based on which a retrieval model is constructed on the fly. The next
section provides this kind of machine learning methods.

3.2 Machine Learning Approaches

Machine learning is applied to LSMR as Query By Example (QBE) where a
user first provides some training examples as a query, then a classifier is con-
structed using them [97,49]. The classifier distinguishes test examples relevant
to the query from the others. Classical QBE methods search for test exam-
ples that are the most similar to given positive examples. The following two
research topics have been assiduously explored. The first is the development
of good similarity measures between positive and test examples. Many simi-
larity measures such as histogram-based measure [51], psychology-based mea-
sure [71], a measure based on weighted graph matching [95], a measure based
on longest common subsequence (LCS) [58], were developed. The other topic
is the speed-up of the similarity calculation. For example, Kashino et al. devel-
oped the method that avoids unnecessary similarity calculation by estimating
the upper bound of similarity [57], and Yuan et al. devised the two-phase hier-
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archical method that first computes a coarse similarity on sub-sampled video
frames, and then verifies the similarity using fine audio features [156].

One big disadvantage of classical QBE methods is that they use global fea-
tures which represent overall characteristics of an example, such as a colour
histogram indicating overall colours, and a texture vector expressing overall
responses to different filters. Such global features cannot capture the detailed
content of the example. For this, in the late 1990s, Schmid and Mohr pro-
posed to represent the example as a collection of local descriptors, each of
which represents the characteristic of a local region [107]. To avoid confusion,
we define a descriptor as the representation of a local region [163], and a fea-
ture as the representation of an example based on a set of local descriptors.
Fig. 3 illustrates feature extraction using local descriptors. First, as depicted
by yellow circles in Fig. 3 (a), local descriptors are sampled from small regions
in an example. Then, the example is represented by a feature which represents
the distribution of sampled local descriptors. The feature (i.e., distribution)
in Fig. 3 (b) indicates that the example contains many descriptors similar to
the one marked with (1), and few descriptors similar to (2). Such a feature
reflects the detailed content of the example. In particular, by sampling a large
number of local descriptors, the feature become robust to shape deformations
and occlusions. For example, even if the car in Fig. 3 (a) is partially masked by
other objects, local descriptors that characterise its visible parts like a wheel,
window or headlight are included in the feature. Below, we review existing
QBE methods in terms of local descriptors, features and classifiers.

(1)

(2)

(3)

a) Local descriptor sampling b) Feature extraction

Fig. 3 An illustration of feature extraction based on local descriptors.

Many local descriptors have been proposed to capture different charac-
teristics of a local region. The most popular one is a Scale-Invariant Feature

Transform (SIFT) descriptor which represents the shape in a local region,
reasonably irrespective of changes in illumination, rotation, scaling and view-
point [73]. Sande et al. developed SIFT descriptors that are defined in dif-
ferent colour spaces and have unique invariance properties for lighting con-
ditions [103]. Furthermore, local descriptors are defined around trajectories,
each of which is obtained by tracking a point in a video [139]. The resulting
local descriptors represent the displacement of a tracked point, the deriva-
tive of that displacement, and edges around a trajectory. Also, Speeded-UP
Robust Features (SURF) descriptors are similar to SIFT descriptors, but can
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be efficiently computed based on the integral image structure which quickly
identifies the sum of pixel values in any image region [14].

The main research theme for feature extraction is to accurately represent
the distribution of local descriptors sampled from an example. The simplest
approach, called Bag of Visual Words (BoVW), represents the distribution
as a collection of characteristic local descriptors, namely visual words [28].
A set of local descriptors are firstly grouped into clusters where each cluster
centre is a visual word. Then, each local descriptor extracted from an ex-
ample is assigned to the most similar visual word. As a result, the example
is represented as a histogram which represents the frequency of each visual
word. Many extensions of BoVW have been proposed, such as soft assignment
which extracts a smoothed histogram by assigning each local descriptor to
multiple visual words based on kernel density estimation [103], sparse coding
which represents the distribution of a large number of base functions used
to sparsely approximate local descriptors [151,155], Gaussian Mixture Model
(GMM) supervector which estimates the distribution of local descriptors using
a GMM [48], Fisher vector encoding which considers the first and second order
differences between the distribution of local descriptors and the reference dis-
tribution [96], and Vector of Locally Aggregated Descriptors (VLAD) which
concatenates vectors each representing the accumulated difference of a visual
word to the assigned local descriptors [10,50].

Since a feature which precisely represents the distribution of local descrip-
tors is necessarily high-dimensional, a classifier effective for high dimensional
data is used in QBE. Typically, a Support Vector Machine (SVM) is used [28,
54,103,113,163] because its ‘margin maximisation’ principle can extract a well-
generalised classification boundary between positive and negative examples in
the high-dimensional feature space [137]. It should be noted that only positive
examples are provided in QBE. Regarding this, Natsev et al. proposed to use
randomly sampled examples as negative by assuming that only a small number
of examples in the database are relevant to a query [86]. That is, almost all
of the randomly selected examples are irrelevant and serve as negative. This
approach works reasonably well and has been used in many existing works [87,
119,113]. In addition, to cover a diversity of examples relevant to a query, bag-
ging and random subspace are used to combine multiple SVMs which are built
using subsets of randomly selected training examples, and subsets of randomly
selected feature dimensions, respectively [86,130,150]. Such SVMs characterise
different portions of relevant examples. In this context, we proposed a method
using rough set theory which is a set-theoretic classification approach for ex-
tracting rough descriptions of a class from imprecise (or noisy) data [113].
Specifically, our method extracts classification rules each of which represents
an SVM combination to correctly identify a different subset of positive ex-
amples. By accumulating relevant examples with such classification rules, a
variety of relevant examples can be accurately covered.

Compared to classical syntactic methods, the above machine learning meth-
ods have much more generality because examples relevant to a query can be
retrieved with significantly higher accuracy, regardless of video genres, camera
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techniques and shooting environments. However, machine learning methods
are useful only for concepts corresponding to ‘basic categories’ of meanings,
such as Person, Car and Building. Even though visual appearances of each ba-
sic category significantly vary, these are apparently different from those of the
other basic categories [30,64]. Compared to this, for concepts corresponding to
‘subordinate categories’ like Rider, Driver and Factory Worker of Person, and
Bus, Van and Truck of Car, their visual appearances can be distinguished only
by small localised regions, or considering the relation to surrounding concepts.
In addition, since an event (or context) involves multiple concepts, examples
relevant to it incur a much larger variance of features than the one of exam-
ples relevant to a concept. Therefore, knowledge about human interpretation
is necessary to appropriately detect concepts for subordinate categories, events
and contexts.

3.3 Using Large-scale Data

This section presents methods for scaling up machine learning methods to
large-scale data. We mainly focus on concept detection where a large num-
ber of training examples are available. Recently, there are several worldwide
competitions, such as TRECVID [116] and PASCAL VOC [2], where concept
detection methods developed in different research institutes are compared us-
ing large-scale benchmark data. These competitions have been promoting the
improvement of concept detection methods.

One of the most important issues in concept detection is that different
camera techniques and shooting environments cause visually diverse examples
where a certain concept appears. To cover such a diversity, a large number
of training examples are required. In general, the detection performance is
proportional to the logarithm of the number of positive examples, although
each concept has its own complexity of detection [84]. This means that 10
times more positive examples improve the performance by 10%. In an extreme
case, 80 million training images yield accurate detection performance [134].
Furthermore, using two billion images, specific concepts such as celebrities,
consuming electronics and landmarks can be detected accurately [141]. Based
on the importance of the number of training examples, researchers have devel-
oped online systems where many users on the Web collaboratively annotate a
large number of examples as positive or negative [11,138].

Another important issue is sampling of local descriptors. Algorithms for
extracting local descriptors generally consist of two modules, region detector

and region descriptor [163]. The former detects regions useful for characterising
concepts, and the latter represents each of the detected regions as a vector.
A concept is shown in significantly different regions, and in videos, it does
not necessarily appear in all video frames. Considering such ‘unclear’ concept
appearances, it is effective to exhaustively sample local descriptors in both
the spatial and temporal dimensions. Indeed, the performance is improved as
the number of sampled local descriptors increases [88]. Moreover, Snoek et al.
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compared two methods. One extracts features only from one video frame in
each shot (one shot contains more than 60 frames), and the other extracts
features every 15 frames [120]. They found out that the latter exceeds the
former by 7.5 to 38.8%.

Although a large number of training examples and exhaustively sampled
local features are immensely important for accurate concept detection, pro-
cessing them requires high computational costs. Many methods for reducing
these costs have been developed. They can be classified into two types, ‘high-
performance computing’ and ‘algorithm sophistication’. The first type paral-
lelises the classifier training/testing process and the feature extraction using
special hardware, such as a cluster consisting of multiple PCs [7,150], multi-
core CPU [27] and General-Purpose computing on Graphics Processing Units
(GPGPU) [23,104]. The second type includes a fast SVM training method
that iteratively solves sub-problems consisting of the most problematic train-
ing examples [34], a fast SVM training method that iteratively solves simple
one-variable sub-problems [47], a fast SVM training and test method that ef-
ficiently computes similarities (kernel values) by sorting dimension values of
each example [76], a fast SVM test method by hashing SVM parameters and
the feature of each test example [70], and a fast feature extraction method by
organizing the distribution of local features into a tree structure [48].

We also developed a fast SVM training/test method and a fast feature
extraction method based on matrix operation [115]. The former re-formulates
similarity computation, which enables batch computation of similarities among
many examples. The latter re-formulates probability density computation, so
that probability densities of many local descriptors can be computed in a
batch. Based on these, SVM training/test and feature extraction become about
10-37 and 5-7 times faster than the normal implementation, respectively. By
processing a large number of training examples and exhaustively sampled local
descriptors using the above methods, we achieved the highest performance in
TRECVID 2012 Semantic Indexing (light) task, which is one of the most
predominant worldwide competitions on video analysis and retrieval [115].

Finally, as described above, much research effort has been invested to scale
up machine learning methods to large-scale data, still the underlying frame-
work remains the same. In other words, researchers prioritise the generality
and scalability of a method, so that the same method can be used to search
large-scale data in terms of a variety of queries. Of course, improving the
generality and scalability is very important. But, we think that, the intensive
favour to it is one reason why the mechanism of recent LSMR methods has be-
come completely different from the mechanism of human’s semantic meaning
interpretation.

4 Human-based LSMR

This section first presents classical human-based LSMR methods based on
manual annotation. Recent methods are then described where manual anno-
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tation is conducted collaboratively by users on the Web. Finally, we review
interactive methods that enable users to interactively refine retrieval results.

4.1 Manual Annotation

In classical manual video annotation methods, videos are manually annotated
with text descriptions. The following three issues are mainly addressed [128]:

1. Identification of meaningful segments: Videos are known as continuous me-

dia where sequences of media quanta (i.e., video frames and audio samples)
convey semantic meanings when continuously played over time [41]. Hence,
any segment of a video can become a meaningful unit.

2. Annotation that should be provided: A video contains too many meanings
ranging from low-level ones like colour and shape to high-level ones like
event and context. Thus, it is difficult to annotate the video with all the
meanings contained in it.

3. Discrepancy between annotation and user expectation: This focuses on seg-
ments that are annotated and segments that are expected to be retrieved
by users. For example, one intuitive answer to the query “two persons A

and B are talking to each other” is a shot annotated with both A’s and
B’s presences. However, a sequence of shots can be another answer where
shots annotated only with A’s presence and shots annotated only with B’s
presence are repeated one after the other. Thus, dynamic organisation of
annotated shots (segements) is required to correctly respond to queries.

In accordance with these, we present several manual annotation methods.
Weiss proposed the algebraic video data model where text descriptions are

organised in a nested hierarchical way by considering their temporal relation-
ships, such as overlapping and inclusion [143]. This facilitates an easy way to
attach different meanings to the same segment, and construct compound mean-
ings from annotated meanings using algebraic operations like union, intersec-
tion, concatenation and so on. Oomoto and Tanaka developed Object-oriented
Video Information Database (OVID) where a segment and text descriptions
are regarded as a video object and attribute values, respectively [91]. Such at-
tribute values of a video object are inherited by another object based on their
temporal inclusion relationship. This way, text descriptions are shared among
video objects, so that the manual annotation effort is significantly reduced.

Uehara et al. proposed an approach which represents the story of a video
using a binary tree, called a story graph [135]. In this graph, each node rep-
resents the relation (e.g., sequential, physically-causal and psychologically-
causal) between two successive segments, and edges are labelled with semantic
constraints. This enables users to retrieve arbitrary-length scenes specified by
natural language, and retrieve causes or consequences of queries based on
causal relationships. Zettsu et al. developed a time-stamped authoring graph
where each node represents a text description at a certain point of time in a
video, and two nodes are connected if they have a strong semantic correlation
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based on co-occurrences of words in text descriptions [158]. Given a query,
a segment is retrieved as the minimal subgraph which consists of nodes con-
taining words in the query. This way, meaningful segments are dynamically
determined depending on issued queries.

Pattanasri et al. developed a method using a knowledge base (ontology)
about contexts [94]. This knowledge base represents relationships among verbs,
such as “kill” implies “die”. Thereby, video segments that are related in terms
of causes and effects of person’s actions, can be linked together and retrieved
as a whole. François et al. developed an extensible and hierarchical framework
for representing events in videos [38]. Here, complex events are constructed
from simpler ones by operations, such as sequencing, iteration and alternation,
which are defined in a knowledge base. Like this, various complex events can
be defined only using relatively few primitive events.

Since the above approaches require expensive manual annotation cost, re-
search focus has been shifted to machine learning methods in Section 3.2 and
the ones described in the next section. It should be noted that very flexible
context-level retrieval is possible based on laborious manual annotation.

4.2 Web-based Annotation

Many Web-based annotation systems have been developed to distribute man-
ual annotation of large-scale multimedia data to many users on the Web. To
achieve this, the usability and quality of annotation should be addressed. The
usability means whether users can easily annotate examples or not. If this is
insufficient, it cannot be expected that many users participate in annotation.
Regarding the quality, meaningless annotation may be provided by malicious
users or operation mistakes.

The IBM research group developed a system for annotating a large num-
ber of shots with concepts’ presences or absences [69,138]. To improve the
usability, users are allowed to customise their annotation styles, such as the
number, size, and layout of shots displayed per page, using mouse and/or key-
board, and annotating one or more concepts at a time. In addition, the system
informs a user of how difficult the annotation of each concept is based on the
disagreement with past annotations by different users, so that the annotation
quality improves. In [11], the system in [138] is extended using active learning,
in order to preferentially annotate shots that are promising for improving the
classifier of a concept (see Section 4.3 for more detail about active learning).

Russell et al. developed LabelMe which is a Web-based system for annotat-
ing object (concept) regions in images [102]. Given an image, the user labels
an object region by creating a polygonal region by mouse, then types the ob-
ject name. To improve the usability and maintain the consistent annotation,
the researchers considered several extensions, such as the lexical knowledge
base (WordNet) for expanding and disambiguating freely typed object names,
and the object relation for suggesting candidate objects where their regions
frequently overlap a user-specified region.
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However, the above systems do not consider the motivation of users. In
other words, regular users on the Web are unlikely to volunteer to annotate
when no benefit or no reason is given. In consequence, only researchers partic-
ipate in annotation, which makes it difficult to collect large-scale annotation.
Von Ahn and Dabbish proposed a Games With A Purpose (GWAP) approach
where users play a game, and as a side effect, a computationally difficult task
is solved [4,5]. More concretely, users play a fun game without knowing that
they conduct image annotation. Owing to the motivation that users want to
have fun, as of July 2008, 200, 000 users contributed to assigning more than
50 million labels to images on the Web [5].

The first game based on the GWAP approach is the ESP game where
randomly paired users are first given the same image, then each user guesses
a label that another user is likely to provide [4,5]. If labels provided by both
users agree, they get a certain number of points, and the next image is given.
Like this, users are encouraged to get more points and play the ESP game
many times. Since users know nothing and cannot communicate with each
other, the easiest way for them to earn points is to provide labels relevant to
given images. Thus, annotation data obtained by the EPS game are likely to be
meaningful. The quality of annotation is further improved using taboo words
that users are not allowed to type. Several variants of the ESP game have
been developed, such as games for object region annotations [6,123], video
annotation [169], music annotation [13] and geographically-referenced photo
annotation for landmark objects [15].

Another approach that motivates users is crowdsourcing that outsources
problems performed by designated human (employee) to users on the Web [98].
In the field of multimedia annotation, one of the most famous crowdsourcing
systems is Amazon’s Mechanical Turk where anyone can post small tasks and
specify prices paid for completing them [59].

Although large-scale annotation data can be obtained by the above Web-
based systems, flexible retrieval like those presented in the previous section
is difficult. This is because annotation has to be simple in order to maintain
the usability. Also, one drawback of the GWAP approach is that users tend to
maximise their scores, so collected labels only represent general properties of
examples (e.g., colour and shape), but do not represent specifics or details [43].
Furthermore, it requires huge monetary cost to apply Mechanical Turk to
large-scale data. To the best of our knowledge, no Web-based system that fully
supports annotation of high-level meanings has been developed until now.

4.3 Interactive Approaches

This section focuses on interactive approaches where users iteratively refine the
retrieval performance based on the current result. These are needed because
of the user individuality, which means that even for the same query different
users may be interested in different data [166]. For example, for the query
“horse”, one user may look for shots showing “adult horse”, while another
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may look for shots showing “child horse”. In addition, it is often difficult for a
user to precisely express his/her intent, because of the poor lexical vocabulary
or the lack of proper positive examples. This is called the intention gap which
is the discrepancy between user’s search intent and the query specified by
him/her [159]. Thus, the interactive refinement of retrieval results is necessary
to overcome the user individuality and intention gap.

One of the most popular interactive approaches is Relevance Feedback (RF)
that asks a user to provide feedback regarding the relevance or irrelevance of
currently retrieved examples [166]. RF can be also considered as active learning
that selects the most informative examples for improving the performance of
a classifier, and asks the user to annotate them [140]. Using such RF or active
learning, a classifier is refined so as to efficiently find desired examples. Rui et
al. developed one of the earliest RF method that dynamically updates both
feature weights and feature dimension weights based on the user-provided rel-
evance score for each retrieved image [101]. Also, the most typical RF method
uses an SVM as a classifier where examples closest to its decision boundary
are labelled by the user [133,140]. This means that for such examples the
prediction of the SVM is the most uncertain, so labelling them is useful for
refining that SVM. In other words, examples far from the decision boundary
are regarded to be reasonably classified, thus labelling them is redundant.

In [147], Wu and Zhang proposed an RF method using a random forest
which predicts the relevance of an example to a query, by combining multiple
tree classifiers built on different subsets of randomly sampled training ex-
amples. By refining the random forest based on additional training examples
obtained by RF, multiple tree classifiers can cover the multimodal distribution
of relevant examples in the feature space. This approach is extended to adap-
tive pattern discovery [148], which addresses RF by interactively discovering
meaningful patterns of relevant examples. To facilitate pattern discovery, the
authors present a dynamic feature extraction method, which aims to alleviate
the curse of dimensionality by extracting a feature subspace using balanced
information gain. The scientific achievements described above are integrated
within the so called PatternQuest framework [149] that learns the patterns of
interest (i.e., the distribution patterns of positive examples) using classification
methods and RF.

The conventional RF requires a crisp binary decision to be made on the
relevance of the retrieved images. However, user interpretation varies with re-
spect to different information needs and perceptual subjectivity. In addition,
users tend to learn from the retrieval results to further refine their informa-
tion request. It is, therefore, inadequate to describe user’s fuzzy perception of
image similarity with crisp logic. In view of this, Yap et al. [152] proposed a
‘fuzzy’ RF approach which enables the user to make a fuzzy judgement for
relevance ranking, whereas a radial basis function (RBF) network with local
modelling structure is used for similarity learning. Another fuzzy RF method
was described in [12], where a composite short-term and long-term learning
approach is used to learn the semantics of an image. The short-term learning
technique applies Fuzzy Support Vector Machine (FSVM) learning on user la-
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belled and additional chosen image blocks to learn a more accurate boundary
for separating the relevant and irrelevant blocks at each feedback iteration. The
long-term learning technique applies a novel semantic clustering to adaptively
learn and update the semantic concepts at each query session.

Apart from RF, interactive approaches include browser-basedmethods which
provide user interfaces to facilitate finding relevant examples to a query [117].
Here, examples are organised based on some criteria. For example, Wilkins
et al. developed the broadcast-based browsing interface [145]. This provides a
user with a list of videos each of which contains highly-ranked shots (i.e., shots
regarded as relevant by a classifier). Using video as the unit of retrieval result
presentation, the user can explore the context where even if a highly-ranked
shot is irrelevant, shots temporally close to it may be relevant. Snoek et al.

devised the thread-based browsing interface to explore videos from multiple
perspectives [119]. A thread presents a sequence of shots that are linked based
on a certain type of similarity. The interface in [119] utilises four threads re-
garding the temporal similarity between shots, the visual similarity between
shots, the visual similarity of shots to positive examples, and the history of ex-
plored shots. Recently, a live competition has been established where browser-
based methods developed by different research groups are evaluated on the
same experimental setting within view of the audience [108].

Another variant of interactive approaches is visual query suggestion which
assists a user in precisely formulating a query by simultaneously suggesting
keywords and images based on the initially provided keyword [159]. Compared
to only suggesting keywords, adding images is useful for manifesting vague
user’s intent. In addition, the retrieval performance is improved by reranking
images retrieved by keywords based on their visual similarities to suggested
images. In [159], the researchers developed a query suggestion mining method
which firstly selects keywords that are statistically related and informative
to the initially provided keyword. Then, images suggested with each selected
keyword are obtained by clustering images associated with both of the initial
and selected keywords, and choosing the representative ones. The above visual
query suggestion is extended to object retrieval where given a query region of
a certain object, regions showing the same object are retrieved from a large
amount of images [44]. Considering the difficulty of specifying query regions
effective for retrieval, the method suggests a query region of an object by
guaranteeing that this object is also present in other images. To this end, re-
peated patterns of geometrically consistent local descriptors are firstly mined.
Since such a pattern only represents a part of an object, bipartite clustering is
performed to extract regions of the same object as a cluster of patterns that
co-occur in the same images.

To sum up, although the performance is somehow improved by tuning
features or classifiers based on RF, they are substantially the same and remain
insufficient for representing high-level meanings. Browser-based methods just
leave the most difficult task (i.e., interpretation of meanings) to humans. In
addition, visual query suggestion just refines queries and is not related to the
improvement of retrieval algorithms. Furthermore, considering the usability of
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interactive methods, user interaction should be done quickly. Thus, interactive
methods are only useful for concepts which can be easily recognised from single
images or shots.

5 LSMR based on Human-Machine Cooperation

In this section, we review existing human-machine cooperation methods which
incorporate knowledge about human interpretation into LSMR. As shown in
Fig. 2, we sequentially present cognition-based, ontology-based and adaptive
methods, and discuss future research topics for each type of method.

5.1 Cognition-based Approaches

Cognitive science is an interdisciplinary study of mind and intelligence in order
to theoretically explain how the human mind (thinking) works [89,127,132].
In particular, owing to psychological and neurological experiments, the human
visual system is intensively investigated from the ‘sensation’ process which
transducts the light (stimulus) received by the eye into neural signals, to the
‘perception’ process which translates neural signals into meanings. Since these
processes are applicable to concept detection for deriving concepts from raw
multimedia data, we define cognition-based methods as those that improve
concept detection using knowledge about the human visual system. Below, as
shown in Fig. 4, we review cognition-based methods by classifying them into
two categories. The first includes methods using knowledge about concept
meanings like hierarchical/spatio-temporal relations and attributes, and the
second includes methods which aim to implement the human visual system.

Cognition-
based

Consideration of
concept meanings
(Section 5.1.1)

Implementation of
human visual system
(Section 5.1.2)

Hierarchical relation Fast detection of a large number of concepts
Semantically consistent concept detection

Spatio-temporal relation

Attributes
Concept detection with few or no training examples
Robustness to domain changes
Detection of concepts corresponding to subordinate categories

Deep learning Extraction of feature hierarchies with high expressive power

Visual attention
Improvement of concept detection performance
Reduction of computational costs
Subjective property analysis

Depth estimation Improvement of concept detection performance

Improving independent concept detection results
Detection of concepts corresponding to roles

Fig. 4 Categorisation of cognition-based LSMR methods.

5.1.1 Methods Using Knowledge about Concept Meanings

Hierachical relation: A practical LSMR system is required to detect a vari-
ety of concepts. For example, over twenty-one thousand concepts are defined



Towards Large-Scale Multimedia Retrieval 19

in ImageNet which is a huge concept vocabulary for images [31]. However, the
conventional one-vs-all approach constructs a classifier for every concept, and
tests all classifiers for each example. This is not suitable for treating a large
number of concepts. Regarding this, when a human sees a new concept, he/she
does not learn all of its appearance details, but just remembers its category
and discriminative details [78]. This implies that the human forms a hierar-
chy of concepts. It is useful for not only detecting concepts quickly, but also
achieving semantically consistent concept detection.

Using a large lexical ontology (WordNet) [36], Marszalek and Schmid de-
veloped a method which builds a classifier for each concept by defining training
examples, so as to satisfy the hierarchical relation [78]. Here, positive examples
are defined as the union of examples annotated with the concept’s presence
and those annotated with presences of its child concepts, whereas negative
examples are the union of positive examples for its sibling concepts. Then,
the top-down procedure is applied to a test example where the presence of
a concept is examined only if its parent concept is detected. While the one-
versus-all approach takes the computational complexity O(n) where n is the
number of concepts, the above method reduces it approximately to O(n0.64)
without loss of accuracy. Furthermore, Gao and Koller proposed a method
which simultaneously constructs a hierarchy and classifiers by analysing dis-
tributions of positive examples for multiple concepts [40]. For each node in the
hierarchy, a binary classifier is built by classifying concepts into two classes
based on distributions of their positive examples. In particular, to maintain the
generality of the classifier, the relaxed hierarchy structure is adopted where
some concepts are flexibly ignored if their positive examples are difficult to
classify. This method offers similar or slightly better performance with 2-5
times speed-up compared to the one-versus-all approach. Also, the top-down
procedure propagates the error occurred at a concept for which the classifier
is unreliable. To overcome this, Zhu et al. proposed an error recovery method
which adjusts classifier’s output for each concept by considering classifiers’
outputs for its child and grandchild concepts [167]. Logistic regression is used
to obtain the optimal weights, with which classifiers’ outputs for the current,
child and grandchild concepts are linearly combined to refine the detection of
the current concept. The error recovery method improves the performance of
the top-down procedure with 14-27%, and saves the computational cost with
67.1-89.4% compared to the one-versus-all approach.

Spatio-temporal relation: Concepts do not appear in isolation. In other
words, the presence of one concept can be a useful clue for detecting other
concepts. Especially, concepts corresponding to roles in specific situations
(e.g., Athlete) should be deduced based on relations to other concepts (e.g.,
Playground and Running). Below, we describe existing methods that consider
spatial relations among concepts within examples, as well as their temporal
relations over shot sequences. Notice that the following discussion excludes
methods for treating relations among features (or descriptors) like [110,157],
because such relations are not directly related to meanings due to the brittle-
ness of features to changes in camera techniques and shooting environments.
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Jiang et al. proposed a method which refines independent detection re-
sults of concepts by considering their correlations (co-occurrences) [53]. Using
training examples, they first construct a graph where each node is a concept
and the weight of an edge is defined as the Pearson product moment corre-
lation between two concepts. Then, graph diffusion is performed to smooth
detection results in each example, so that results for strongly correlating con-
cepts become similar. This approach refines independent concept detection
results by 11.8-15.6%. Yi et al. developed another refinement method based
on both spatial and temporal relations [153]. Regarding the former, they build
a Conditional Random Field (CRF) which probabilistically estimates a refined
detection result of a concept by considering independent detection results of
this and correlated concepts. To treat temporal relations, another CRF is built
to predict a refined detection result of a concept based on independent detec-
tion result of this and correlated concepts in surrounding shots. Experimental
results showed that spatial and temporal relations respectively improve inde-
pendent detection results by 20.6-36.4% and 26.5-47.2%, and their combination
offers 29.9-53.1% of improvement.

Furthermore, Chen et al. developed NEIL (Never Ending Image Learner)
which continuously extracts visual knowledge (positive images and concept re-
lations) from Internet scale data [26]. NEIL is based on semi-supervised learn-
ing. First, for each concept, seed images are collected through Google Image
Search to built the initial classifier. Second, concept relations are extracted by
computing co-occurrences based on classifiers’ outputs. Third, NEIL selects
additional positive images, each of which has large outputs of both the classi-
fier for a concept and classifiers for its related concepts. Then, NEIL updates
classifiers with additional positive images, and continuously repeats the second
and third processes. As the result of running NEIL for 2.5 months, it could
discover 400K positive examples and 1, 700 concept relations for 2, 237 con-
cepts. It was also shown that using extracted relations improves the concept
detection performance by 4.0-8.8%.

Attributes: A human can categorise even unseen concepts based on their
characteristic appearances. For example, even though a human does not know
the exact names of airplanes, he/she can discriminate between airplanes with
and without propellers. In addition, without knowing the name Zebra, it can
be distinguished from other horses based on the presence or absence of stripes.
Such descriptions of concept appearances like parts (e.g., “propeller”), shapes
(e.g., “round”), textures (e.g., “stripe”) and non-verbal properties (e.g., “prop-
erties that dogs have but cats do not”) are called attributes [35,63]. These are
semantically meaningful descriptions, and their automatic detection is rel-
atively easy compared to concept detection. By representing each example
using responses of attribute classifiers, concepts can be effectively detected
with a small number of training examples, or only with plain text descrip-
tions [35]. Also, as long as attribute classifiers are robust, the performance of
attribute-based concept detection can be maintained irrespective of domain
changes. Moreover, since attributes capture detailed appearances (e.g., pro-
peller of an airplane) which are under-estimated by features based on many
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local descriptors, they are useful for detecting concepts corresponding to sub-
ordinate categories like Jet Airplane and Propeller Airplane of Airplane [24].

Farhadi et al. proposed a method which constructs an attribute classi-
fier, where characteristic features are extracted by contrasting examples with
and without the attribute within the same category [35]. They showed that
attribute-based concept detection can achieve similar performance only using
20% of training examples, compared to feature-based detection. Lampert et al.
verified the effectiveness of attributes for ‘zero-shot learning’ scenario. Here,
no training examples are given, and a concept is detected using responses of at-
tribute classifiers, and prior knowledge about which attributes are relevant to
the concept [63]. Only for parts in attributes, one of the most popular methods
is Deformable Part-based Model (DPM) which detects a region of a concept
(object) by considering positions and deformations of parts, where each part
is defined as a filter to capture its shape [37]. Compared to not-using parts,
this method achieves 62.5% and 33.3% greater performance for localising Per-

son and Car, respectively. Recently, Chai et al. demonstrated that concepts
for subordinate categories can be effectively identified using features extracted
from parts obtained by DPM (together with features from a region by image
segmentation) [24]. Finally, since it is laborious to manually define a large vo-
cabulary of attributes, Juneja et al. developed a method which automatically
extracts distinctive attributes by firstly grouping regions of a certain concept
into clusters, then examining the entropy of whether regions similar to those
in each cluster are contained in different concepts [55]. Also, the method in
[77] extracts attributes using crowdsourcing where users annotate correspond-
ing regions in images showing the same concept, and differences in images
displaying different concepts.

5.1.2 Implementing the Human Visual System

Deep learning: The human brain processes visual information in hierarchical
ways where neurons in the early visual areas extract simple features, which
are transmitted to neurons in higher-level areas to form more complex fea-
tures or concepts [60]. Inspired by this, deep learning has been developed to
learn feature hierarchies with higher-level features formed by the composition
of lower-level ones [16,17]. This aims to construct multiple levels of feature
representations where higher layers characterise more abstract features. Deep
learning mainly offers the following three advantages (see [17] for more detail):
The first is the expressive power where the combination of (distributed) fea-
tures at each layer can define the exponential order of higher-level features,
and this order is further exponentially increased by passing through layers.
The second advantage is the invariance property where more abstract features
are generally invariant to subtle changes in visual appearances. The last one is
the explanatory factor that the learnt feature hierarchy can capture valuable
patterns or structures underlying raw images or videos. Finally, a classifier for
detecting a concept is created by using the learnt hierarchy as initialisation of a
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multi-layer neural network, or building a supervised classifier by constructing
the feature vector of each example based on the hierarchy.

In [61], deep learning has been implemented as a multi-layer convolutional
neural network which iteratively conducts convolution or pooling of outputs
by neurons in the previous layer. Convolution works as feature extraction us-
ing filters each represented by weights of a neuron. On the other hand, pooling
summarises outputs of neighbouring neurons to extract more abstract features.
The multi-layer convolutional neural network is optimised by stochastic gra-
dient descent which updates each weight of a neuron by backpropagating the
derivative of training errors in terms of this weight. In ILSVRC 2012 which
is a worldwide competition on large-scale image classification [1], the above
mentioned method with the error rate of 15.3% significantly outperformed the
others (the second best error rate was 26.1%). Also, Le et al. developed a nine-
layer stacked sparse autoencoder to train concept detectors from unlabelled
images [65]. Each layer consists of three sub-layers, filtering, pooling and nor-
malisation, which respectively offer feature extraction from small regions of the
previous layer, the invariance of features (neighbouring neurons’ outputs) to
local deformation of visual appearances, and the range adjustment of features.
The stacked sparse autoencoder is optimised layer-by-layer so that sparse fea-
tures constructed at a layer can be accurately converted back into the ones
at the previous layer. By training such a stacked autoencoder using 10 mil-
lion unlabelled images with 16, 000 cores, it was shown that the highest-level
neurons characterise concepts like Face, Cat Face and Human Body. More-
over, compared to state-of-the-art methods, the multi-layer classifier using the
stack autoencoder as the initialisation yields 15% and 70% performance im-
provement for 10, 000 and 22, 000 concept detection tasks, respectively.

Visual attention: Selective attention is the brain’s mechanism that deter-
mines which part of the sensory data is currently of the most interest [39].
This enables humans to conduct real-time decision-making by closely analysing
selected parts in a large amount of data, captured by eyes and ears. Visual
attention implements selective attention on images and videos to detect salient
regions that are likely to attract users [39]. By filtering irrelevant regions, visual
attention yields both the improvement of concept detection performance and
the reduction of computational cost. In addition, visual attention can bridge
the discrepancy between concept detection and retrieval. The former aims to
detect concepts irrespective of various changing factors, while the latter needs
to retrieve examples where concepts related to a query appear in regions draw-
ing user’s attention. For example, for the query “a car is moving”, the user
is not interested in an example where a Car moves in a small background
region. Thus, visual attention facilitates analysing the subjective property of
each example and achieving meaningful retrieval for humans.

Most of the visual attention methods analyse spatial distributions of bi-
ologically inspired features (e.g., brightness, contrast and curvature) in an
example, and produce a saliency map which shows the degree of salience of
each pixel [39]. Typically, pixels which are irregular compared to surround-
ing ones are regarded as salient. However, this kind of bottom-up approaches
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based only on features do not work well. Thus, researchers are exploring how
to adopt top-down approaches using prior knowledge. One popular knowledge
is ‘contextual cueing’ which means that a human can easily find a target ob-
ject, when the visual context (i.e., spatial layout of objects) is similar to the
past [39,67]. Contextual cueing is implemented as supervised classification to
build a classifier which detects salient regions in a test example, by referring
to training examples where salient regions are annotated by manual or eye
fixation records. In [67], multi-task learning is used where salient regions in
examples with a particular visual context are detected by sharing classifiers
among examples with correlated visual contexts. Compared to building a clas-
sifier for every visual context, each of the above classifiers is simultaneously
built using more training examples with different visual contexts. This yields
the better generalisation of the classifier. Also, based on saccades which are
the transition of eye fixations (i.e., salient regions), Sugano et al. proposed an
image segmentation method which performs joint clustering of fixation loca-
tions and seed regions [124]. This is formulated as energy minimisation on a
graph, where each edge represents the cost for merging a pair of a fixation
location and a seed region. Meaningful regions are extracted as the ones which
are characterised by densely distributed fixations and uniform visual features.
Experimental results showed that compared to a standard image segmentation
method, jointly using fixations improves the performance with 17.5 to 50%.

Depth estimation: A 2D example (image or video frame) does not hold
depth information in the real 3D world. As a result, for example, even though
a Person stands in front of a Table, a 2D example shows that their regions
are overlapping. In addition, despite the fact that a Person throws a Ball far,
their regions in a 2D example may be close to each other. Meanwhile, humans
can easily recognise depth information in a 2D example. This has inspired
researchers to develop methods that estimate depth information directly from
2D examples [56,105]. To the best of our knowledge, there is no existing work
which uses estimated depth information for concept detection. Nonetheless,
its effectiveness is implied by concept detection using a depth sensor (typi-
cally Microsoft Kinect) [45]. For example, in [100], compared to only using 2D
information, the accuracy of localising various concepts in indoor scenes is im-
proved from 66.2% to 71.4% by additionally using depth information (please
refer to [45] for other works).

In depth estimation, a classifier for predicting depth values in an exam-
ple, is built using training examples where depth values are known with a
depth sensor. Saxena et al. developed a method that firstly divides an ex-
ample into ‘superpixels’ which are homogeneous small regions with similar
properties [105]. They assume that each superpixel has the same depth value,
and represent it with features useful for depth estimation. For example, a
grass field viewed at a short distance has fine textures, while such textures are
blurred when it is viewed at a large distance. In addition, parallel lines have
larger variations in edge orientations as they are viewed at a more distant po-
sition. Using such texture and edge features, a Markov Random Field (MRF)
is built to probabilistically estimate the depth value of each superpixel by
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considering its feature and relative depth values of nearby superpixels. Exper-
imental results showed that depth values are reasonably estimated for 64.9%
of Web images. Karsh el al. developed a method which transfers depth val-
ues in training examples to a test example by assuming that, examples with
similar meanings have similar spatial distributions of depth values [56]. Given
a test example, the method firstly selects visually similar training examples.
Then, depth values in each training example are transferred by extracting the
correspondence of local regions between the training and test examples. In
addition, the method can be applied to a video by smoothing depth values
in each frame based on optical flows, and imposing moving objects to have
similar depth values to the ground that they contact.

5.1.3 Discussion

Although Section 5.1.1 and 5.1.2 present many existing cognition-based meth-
ods, we argue that they only use very limited knowledge about human visual
system. Thus, much more knowledge needs to be adopted. One critical prob-
lem is that these methods use the same approach for every concept. Regarding
this, machine learning methods are useful for concepts with basic categories,
while attribute-based methods are effective for concepts with subordinate cat-
egories. Thus, one possible approach is to define the category of each concept,
and then select a machine learning-based or attribute-based method depend-
ing on categories of concepts. In addition, some concepts significantly affect
visual appearances of others, such as Foggy, Nighttime and Dazzling. Hence,
modelling such relations seems valuable for selecting a classifier or modifying
(transferring) an already trained classifier.

Also, deep learning seems a promising approach for implementing the hu-
man brain mechanism. However, current methods construct a feature hierarchy
by just stacking the same type of layers of neurons, which only have a few vari-
ations of response functions. This hierarchy is much simpler than the human
brain, where visual information encoded by the occipital part is divided into
two interacting pathways, ‘dorsal’ and ‘ventral’, which are responsible for ob-
ject categorisation and space/action analysis, respectively [60]. In addition,
neurons have a variety of functionalities, so they cannot be optimised by the
same parameter optimisation approach [60]. Thus, deep learning needs to be
extended by adopting a more complex hierarchy consisting of diverse types of
neurons, based on a sophisticated optimisation method. Furthermore, visual
attention and depth estimation can be considered to estimate information that
cannot be directly observed from examples. In this context, estimating other
information may be possible. For example, it is known that terahertz sensors
produce waves which can pass through some objects (e.g., papers and plas-
tic) to capture inside elements, and multispectral sensors can record invisible
colour channels to characterise materials of objects. Thus, using these sensors’
outputs as labels of training examples, it may be possible to build a classi-
fier which can detect concepts (inside elements or materials) that humans infer
from examples. Finally, although methods in Section 5.1.1 and 5.1.2 have been
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developed independently, it seems beneficial to establish a framework for in-
tegrating these different categories of methods. We believe that their synergy
will offer significant improvement of concept detection performance.

5.2 Ontology-based Approaches

An ontology is a machine-readable representation of knowledge to explicitly
specify concepts, properties of concepts and relations among concepts in a
given domain [46]. We define ontology-based approaches as those that utilise
ontologies to extract high-level meanings (i.e., events and contexts) based on
detection results for multiple concepts. Fig. 5 illustrates an overview where
videos showing the event “birthday party” are identified. Note that although
Fig. 5 uses video as the unit, it is straightforward to apply the following dis-
cussion to image or shot. In an ontology-based approach, every example is
represented using concept detection scores, each representing a scoring value
between 0 and 1 in terms of a concept’s presence. A larger score indicates a
higher likelihood of the concept’s presence. In Fig. 5, as depicted by white-
filled arrows, every example (video) is represented as a sequence of vectors
each representing concept detection scores in a shot. Then, as indicated by
black-filled arrows, based on this representation, a classifier is built using pos-
itive and negative examples, and used to discriminate between relevant and
irrelevant test examples to the high-level meaning.

Negative examples

Positive examples

Shot ID

Person: 1.0
Indoor: 0.0
Table:   0.3
Crowd: 0.1
...

Person: 0.7
Indoor: 0.9
Table:   0.2
Crowd: 0.2
...

Person: 1.0
Indoor: 0.8
Table:   0.2
Crowd: 0.5
...

Person: 1.0
Indoor: 0.8
Food:    0.2
Crowd: 0.0
...

Shot ID

Person: 0.8
Indoor: 0.9
Table:   0.6
Crowd: 0.1
...

Person: 0.9
Indoor: 0.7
Food:    0.7
Crowd: 0.4
...

Shot ID Shot ID

Person: 0.7
Indoor: 0.8
Table:   0.4
Crowd: 0.2
...

Person: 0.9
Indoor: 0.9
Table:   0.5
Crowd: 0.2
...

Person: 1.0
Indoor: 0.9
Food:    0.3
Crowd: 0.2
...

Shot ID Shot ID

Test examples regarded as relevant

Shot ID

Person: 0.5
Indoor: 0.0
Food:    0.0
Crowd: 0.5
...

Shot ID

Test examples regarded as irrelevant

Classifier
1. Extensional
(Section 5.2.1)
2. Intensional
(Section 5.2.2)

Fig. 5 An overview of an ontology-based approach.

Since a high-level meaning is derived from the interaction among multiple
concepts, the set of relevant examples has got a huge variance in the space
of a low-level feature. Compared to this, owing to the recent progress, sev-
eral concepts can be accurately detected. Thus, while each dimension in a
low-level feature just represents physical values, detection scores for a concept
(i.e., values in one dimension) represent appearances of a human-perceivable
meaning. Hence, in the space of concept detection scores, the variance of rel-
evant examples becomes smaller and can be modelled more easily. In other
words, concept detection scores work as ‘intermediate’ features for a classifier
to bridge between raw example representation and high-level meanings. Sev-
eral publications reported the effectiveness of ontology-based approaches. For
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example, Tešic̀ et al. showed that when using the same classifier (SVM), con-
cept detection scores achieve 50-180% higher event retrieval performance than
colour and texture features [131]. In addition, Merler et al. reported that com-
pared to high-dimensional features based on local descriptors (e.g., SIFT, HOG
and HOF), concept detection scores yield the best performance [80]. In partic-
ular, the example representation using detection scores for 280 concepts only
requires a 15 times smaller data space than high-dimensional features, where
data sizes are crucial for the feasibility of LSMR. Furthermore, Mazloom et

al. demonstrated that concept detection scores lead to 3.1-39.4% performance
improvement compared to the feature based on SIFT descriptors [79].

This section reviews existing ontology-based methods in terms of classi-
fiers. As shown in the middle of Fig. 5, we categorise existing methods into
extensional or intensional. The former includes methods that analyse train-
ing examples to extract concept relations useful for characterising high-level
meanings. In other words, a high-level meaning is defined by providing its
instances (i.e., training examples). On the other hand, intensional methods
utilise knowledge about concept relations to characterise high-level meanings.
That is, a high-level meaning is formed by its aspects (i.e., concept relations)
known in advance. It should be noted that, in addition to classifiers, ontology-
based approaches have two other important issues. The first is the construction
of a concept vocabulary. For this, several large-scale concept vocabularies have
recently become available, such as LSCOM (Large-Scale Concept Ontology for
Multimedia) [83], ImageNet [31] and VSO (Visual Sentiment Ontology) [22].
The second issue is concept detection which is performed and improved by
cognition-based methods in the previous section.

5.2.1 Extensional Methods

In what follows, we classify extensional methods into two categories, where the
one focuses on high-level meanings within images/shots, and the other targets
those over shot sequences.
Within images/shots: In general, methods in this category represent each
example as a vector of concept detection scores, and build a classifier which
discriminates between relevant and irrelevant examples to a high-level mean-
ing. In other words, this classifier fuses detection scores for different concepts
into a single relevance score, which indicates the relevance of an example to the
meaning. Existing methods are roughly classified into four categories, linear
combination, discriminative, similarity-based or probabilistic. Linear combina-
tion computes the relevance score of an example by weighting detection scores
for multiple concepts. One popular weighting method is to use concept detec-
tion scores in positive examples. If the average detection score for a concept in
positive examples is large, this concept is regarded as related to the query and
associated with a large weight [85,142]. Another popular method is text-based
weighting where a concept is associated with a large weight if its name is lexi-
cally similar to a term in the text description of the query [85,142]. The lexical
similarity between a concept name and a term can be measured using a lexi-
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cal ontology like WordNet. Discriminative methods construct a discriminative
classifier (typically, SVM) using positive examples [85,87]. The relevance score
of an example is obtained as the classifier’s output. Similarity-based methods
compute the relevance score of an example as the similarity between positive
examples and the example in terms of concept detection scores. The method
in [68] uses the cosine similarity and a modified entropy as similarity mea-
sures. Probabilistic methods estimate a probabilistic distribution of concepts
using detection scores in positive examples, and use it to compute the rele-
vance score of an example. In [99], the relevance score of an image is computed
as the similarity between the multinomial distribution of concepts estimated
from positive examples and the one estimated from the image.

Over shot sequences: When detecting a high-level meaning over shot se-
quences, one big problem is the difficulty of annotating the relevance of each
shot. The reasons are two-fold: First, it is labour-intensive to annotate shots
contained in each video. Second, due to the temporal continuity of meanings in
a video, any segment can become a meaningful unit (see Section 4.1). Specif-
ically, humans tend to relate each shot in a video to surrounding ones. Let
us consider the video in Fig. 6 where the event “birthday party” is shown.
There is no doubt that Shot 2 and 3 show the birthday party, based on which
Shot 1 and 4 are related as chatting before the party and playing after it,
respectively. This kind of shot relation makes it ambiguous to determine the
boundary of a high-level meaning. In Fig. 6, one may think that the birthday
party is shown only in Shot 2 and 3, while someone else may think that it is
shown in the whole of the video, by regarding Shot 1 and 4 as parts of the
party. Thus, objective annotation is only possible at the video level in terms
of whether each video contains a high-level meaning or not. A classifier needs
to be build under this weakly supervised setting, where even if a training video
is annotated as relevant to the meaning, it includes many irrelevant shots.

(Shot 1) (Shot 2) (Shot 3) (Shot 4)

Time

Fig. 6 An example video where the event “birthday party” is shown.

To overcome weakly supervised settings3, we developed an event detection
method using a Hidden Conditional Random Field (HCRF) [109]. It is a prob-
abilistic discriminative classifier with a set of hidden states. These states are
used as the intermediate layer to discriminate between relevant and irrelevant

3 Event detection under weakly supervised settings is being explored in TRECVID Multi-
media Event Detection task [116]. Although some other methods (e.g., [129,136]) can treat
weakly supervised settings, they use low-level features, so are excluded from our discussion.
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shots to an event. Specifically, each shot in a video is assigned to a hidden
state by considering its concept detection scores and transitions among hid-
den states. Such hidden states and transitions are optimised so as to maximise
the discrimination between positive and negative videos. We showed that the
optimised hidden states and transitions successfully capture concepts and their
temporal relations, that are specific to the event. Sun and Nevatia proposed a
method which extracts temporal concept transitions in an event using Fisher
kernel encoding [125]. Using all training videos, they first build an HMM which
works as a prior distribution, representing concept transitions in the general
case. Then, the vector representation of a video is created by computing the
difference between the actual transitions of concept detection scores in the
video, and the transitions predicted by the HMM. Thereby, vectors of positive
videos for an event represent characteristic concept transitions by suppressing
trivial transitions that are observed in many negative videos. Finally, to the
best of our knowledge, Lu and Grauman developed the first metric which can
quantify the context between two events, by finding concepts that appear in
the first event and strongly influence the second one [74]. Such influences are
measured by performing random walk on the bipartite graph, which consists
of event and concept nodes. A concept is regarded as influential, if its igno-
rance leads to a dramatical decrease of the probability of transition between
two event nodes. In [74], the above mentioned metric was used to create sum-
maries consisting of events associated with semantically consistent contexts.

5.2.2 Intensional Methods

Intensional methods exploit knowledge about concept relations to improve the
detection performance of high-level meanings. To our best knowledge, existing
methods can only deal with high-level meanings within examples. We will later
discuss how to extend them for high-level meanings over shot sequences.

Deng et al. devised a method which computes the similarity between two
examples based on the concept hierarchy [30]. The component similarity is
computed as a weighted product between the detection score of an example
for one concept, and the score of the counterpart example for another con-
cept. Here, the weight is defined based on the lowest common ancestor of two
concepts. For example, the component similarity for Donkey and Horse has a
higher weight than the one for Donkey and Keyboard, because the common an-
cestor of the former concept pair Equine is more specific than that of the latter
pair Object. The similarity between two examples is computed as the sum of
component similarities. It was reported that using the concept hierarchy yields
significant performance improvement [30].

Chen et al. proposed an interesting approach to organise independently de-
tected concepts in an example using an ontology [25]. This ontology represents
the hierarchy of concepts and their interactive relations. Based on this, the re-
searchers devised an energy minimisation method which not only specialises
detected concepts into more concrete ones, but also extracts their relations.
The energy function consists of three terms: the first uses concept relations
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for estimating ontologically-consistent relations, the second term favours deep
specialisation of concepts based on the concept hierarchy, and the last term
uses pre-trained classifiers to examine the visual appearance of each specialised
concept or estimated relation. By minimising this energy function, for instance,
independently detected Person and Ball are specialised into Basketball Player

and Basketball which are linked with the relation of Throw. It was reported
that compared to only using visual features, using the ontology reduces error
rates of concept detection and relation estimation by 2.6-14.2%.

Also, Guadarrama et al. developed a method which uses concept hierarchies
obtained by text mining to extract events characterised by Subject/Verb/Object
(SVO) relations [42]. First, SVO triplets are extracted from natural language
descriptions of YouTube videos. Then, for each of S, V and O, concepts (i.e.,
subjects, verbs or objects) are clustered into a hierarchy based on their corre-
lations. For each node (a set of concepts) in this hierarchy, a classifier is built
where SVM’s output is weighted based on both the specificity of the node
and its WUP similarity to the other nodes. Given an example, such weighted
outputs are used to select the best node for each of S, V and O. Finally, S,
V or O is described by the WordNet concept with the highest sum of WUP
similarities to concepts in the best node. Owing to the specificity and WUP
similarity, the method can flexibly select not only specific concepts, but also
concepts that are less specific but visually plausible.

5.2.3 Discussion

Compared to cognition-based methods in Section 5.1, much less ontology-
based methods have been developed so far. Since concepts are just primitive
meanings, the advancement of ontology-based methods is the most important
topic to realise practical LSMR systems. Below, we point out three issues that
deserve much research attention in the future.
1. Uncertainties in concept detection: Traditional ontology formalisms
do not account for uncertainties, where an ontology itself is not uncertain.
Compared to this, even using the most effective methods, it is still difficult to
accurately detect any kind of concept. In particular, real-world examples are
‘unconstrained’ [52] in the sense that they can be taken by arbitrary camera
techniques and in arbitrary shooting environments. Thus, it cannot be ex-
pected to detect concepts with 100% of accuracy. Relying on such uncertain
concept detection significantly damages the detection performance of high-
level meanings. For this, we developed a method which handles uncertain
concept detection based on Dempster-Shafer Theory (DST) [111,112]. DST is
a generalisation of Bayesian theory [32], where a probability is not assigned
to a concept, but instead to a subset of concepts. This enables us to consider
a probability that one of a set of concepts could be present in an example.
By accumulating such probabilities for sets including a certain concept, we
can define the plausibility which represents the upper bound probability of the
concept’s presence in the example. We incorporate such plausibilities into a
probabilistic classifier, where plausibilities for a concept’s presence are esti-
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mated as density ratios between positive and negative examples in terms of
detection scores. That is, plausibilities are ‘refined’ detection scores by con-
sidering uncertainties in detecting the concept. Compared to directly using
concept detection scores, using plausibilities yielded 19.1% of performance
improvement in detecting events within examples. We expect that such ap-
proaches for managing uncertain concept detection will be further explored to
detect high-level meanings over shot sequences.

2. Temporal continuity of a concept’s presence: Video editing is deemed
as one main reason why intensional methods have not been developed for
high-level meanings over shot sequences. The temporal order of shots can be
easily distorted by inserting shots, that display different meanings than those
of surrounding shots. Thus, it is difficult to reason a high-level meaning by
specifying temporal positions of concepts. One possible solution is to model the
temporal continuity of a concept’s presence. Let us consider a sequence of three
shots, where the first shot shows a Person bringing a Birthday Cake, the second
one shows Persons talking to each other, and the third one shows Persons
eating the Birthday Cake. Here, even if the Birthday Cake is not shown in
the second shot, humans can assume its existence. Hence, it is reasonable to
consider that the Birthday Cake is not absent in the second shot, but is just
‘invisible’. To capture such a temporal continuity of a concept’s presence, it
seems effective to analyse appearance patterns of a concept related to the
development of the story in a video. For instance, when a concept plays an
important role, it is present in many shots, otherwise it is not. Based on this,
our method in [114] can divide a video into shot sequences, characterised by
probabilistically distinct patterns of the concept’s presence. In such a shot
sequence, the concept is assumed to be continuously present with the same
degree of contribution to the story. This allows us to modify the detection
score of a shot by considering scores of surrounding shots. Then, reasoning of
high-level meanings is performed on modified concept detection scores.

3. Knowledge extraction: To reason various high-level meanings, a large
repository of concept relations is required. One lesson from the success of
attributes, concepts, and curriculum learning in the next section, is to gradu-
ally increase levels of meanings. Thus, we need to first address the extraction
of concept relations which characterise various events. This requires to solve
the following three fundamental issues: The first is to define a standardised
vocabulary of events. As described in [42], while vocabularies of concepts corre-
sponding to nouns are already large-scale like LSCOM and ImageNet, existing
works only focus on a handful of events. We expect that, as concepts in LSCOM
have been defined through the collaboration of multimedia researchers, library
scientists and end users [83], similar effort is needed to construct an event vo-
cabulary. The second issue is how to examine concept relations in events. For
temporal relations, it is crucial to model the temporal continuity of a concept’s
presence, described above. Similarly, depth estimation in Section 5.1.2 is vital
to obtain semantically meaningful spatial relations among concepts. Assuming
that these spatio-temporal concept relations could be successfully estimated,
the last issue is to extract characteristic concept relations for events. Regard-
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ing this, in the next section, we will describe an efficient feedback approach
to extract a large number of semantically meaningful concept relations with
a small amount of user intervention. Finally, this feedback approach can be
used to extract characteristic event relations for certain contexts.

5.3 Adaptive Learning

Human learning can be considered as the repetition of the following process:
Given a new problem, a human first monitors his/her performance, recognises
a deficiency, and uses knowledge that he/she already owns to overcome the
deficiency. By repeating this, the human can accumulate knowledge for solving
diverse problems. Metacognition is a discipline to explore the process of how a
human addresses a problem [8]. Assuming a cognitive system which simulates
a functionality of the human mind, metacognition aims to monitor, model and
control the behaviour of that system to effectively solve a problem. We position
adaptive learning as metacognition for LSMR. Specifically, one LSMR method
consists of various processes such as feature extraction, classifier construction,
parameter tuning, training example collection, and so on. We define adaptive
learning as methods which enhance or optimise one or more of the above
mentioned processes based on knowledge about human learning. Below, we
present two types of adaptive learning, explanatory feedback and curriculum

learning.
1. Explanatory feedback: The traditional RF (or active learning) relies on
the very restrictive communication between a classifier and a user, where the
latter only informs the former of whether an example is relevant or irrelevant to
a certain meaning (see Section 4.3). In the real world, a teacher makes much
complex communication with a leaner. In particular, if the learner makes a
mistake, the teacher tells him/her the reason for it.

Based on this idea, Parkash and Parikh extended RF to Explanatory Feed-

back (EF), where if an example that a classifier selects as relevant to a meaning
is judged to be irrelevant by a user, he/she can explain the reason for this mis-
classification [93]. For example, if an example showing Forest is mis-classified
as Street by the classifier, the user can explain “this example is too natural to
be a Street”. EF is based on attributes with which an example is represented
using responses of attribute classifiers (see Section 5.1.1). Since attributes are
semantically meaningful descriptions, they can be used as a language between
the classifier and the user to realise their complex communication. Especially,
the irrelevance (negative) label assigned to the mis-classified example can be
propagated to examples which contain the attribute explained by EF. In the
above mentioned case, if examples have higher responses for the attribute
“natural” than that of the mis-classified example, they are also regarded as ir-
relevant to Street. Like this, multiple negative examples are obtained only with
one feedback, so that the classifier performance can be effectively improved.
It was demonstrated that EF yields similar classifier performance only with
one-fifth of iterations required in RF [93]. This method has been further im-
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proved by adopting the propagation of weighted irrelevance labels, on-the-fly
update of attribute classifiers based on every feedback, and the example selec-
tion by estimating the entropy reduction resulting from the label propagation
beginning at each example [21].
2. Curriculum learning: Human learning is highly organised based on a
curriculum (education system), where children start to learn easier concepts
and then build up more complex ones. Based on this, Bengio et al. proposed
curriculum learning which builds a classifier by presenting training examples
in a meaningful order, starting with easy examples and gradually introducing
more difficult ones [18]. It should be noted that curriculum learning is not
useful for a classifier with a convex optimisation function like SVM, because the
global optimum can be found in any order of training examples. In other words,
it aims to find a good local minimum to build a classifier with a non-convex
optimisation function. In [18], a two-step curriculum was used for classification
of shapes (rectangles, ellipses and triangles). Here, a multi-layer neural network
is pre-trained using training examples with less variability in shape (squares,
circles and equilateral triangles), and then trained using examples with diverse
shape deformation. It was shown that compared to not-using pre-training, the
two-step curriculum leads to about 23% of performance improvement.

Considering that curriculum learning in [18] relies on pre-defined ‘easiness’
values of examples (e.g., squares are easier to classify than general rectangles),
Kumar et al. developed an iterative method where each iteration not only
enlarges training examples by adding more difficult ones, but also updates
the parameter of a classifier [62]. Assuming that labels of easy examples are
easily predicted by the classifier, the researchers introduced binary variables
each representing whether a training example is used to compute the optimi-
sation function. Since the optimisation function favours correct classification
of training examples, an easier example starts to be used from an earlier iter-
ation. In [62], for object localisation using latent structural SVMs, the error
rate 16.92% was improved to 15.38% by adopting the above curriculum learn-
ing. In a similar fashion, Ma et al. developed a video event detection method
where a continuous-valued label, called ‘fine-grained label’, is assigned to each
negative example, based on how easily it can be distinguished from positive ex-
amples [75]. Such fine-grained labels are initialised based on detection scores
of negative examples for concepts, that are specific to positive ones. Then,
the method jointly optimises fine-grained labels and two classifiers (one using
concept detection scores and the other using features). That is, fine-grained
labels are optimised so as to improve the performance of classifiers. The re-
searchers reported that using fine-grained labels significantly enhances event
detection [75].

5.3.1 Discussion

We consider EF as a promising approach to extract relations between high-
level and low-level meanings, where these meanings are used as a language
to make complex communication between humans and machines. Although
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the current EF only supports attribute-concept relations, it can be used to
recursively extract concept-event and event-context relations (see the compo-
sition of meanings in Fig. 1). For the former relations, EF allows a user to
explain concepts which caused the detection of an incorrect event for an ex-
ample. In order for this EF to appropriately link concepts to the event, it is
necessary to estimate meaningful spatio-temporal concept relations described
in Section 5.2.3. Similarly, EF can be applied to event-context relations, where
a falsely identified context is fixed by explaining the causative events. Also,
easiness values of training examples in curriculum learning imply one interest-
ing research topic to model metalevel features [8]. These do not characterise
meanings, but capture aspects of features, classifiers and parameters in the
LSMR pipeline. Apart from easiness values, for example, it is said that the
performance of a decision tree can be estimated based on the number of nodes,
depth, shape and so on [19]. By devising such metalevel features, we can de-
cide or control a strategy to effectively utilise available features, classifiers and
parameters for accurate retrieval.

6 Conclusion

In this paper, we reviewed existing LSMR methods including the ones that we
developed. By tracing the history of machine-based and human-based meth-
ods, we stated that because of prioritising the generality and scalability for
large-scale data, current methods lack knowledge about human interpretation
which was used in classical syntactic or manual methods. Then, we presented
existing human-machine cooperation methods which incorporate such knowl-
edge into LSMR. In particular, we classified them into three types, cognition-
based methods using knowledge about human visual system, ontology-based
methods using knowledge about human inference, and adaptive learning meth-
ods using knowledge about human learning. Our retrospective survey indicates
one remarkable difference between classical and human-machine cooperation
methods. While the former just lists rules or templates as knowledge, the latter
uses it to sophisticate computational models so as to maintain the generality
and scalability. Since only limited knowledge is used in the current methods
described in Section 5, we expect that much more knowledge will be adopted
and integrated into LSMR.

To reach the aforementioned goal, our final suggestion is to consider the
mutual relation among three types of human-machine cooperation methods.
Fig. 7 illustrates this relation. First, cognition-based methods are used to de-
tect concepts, from which events and contexts are derived by ontology-based
methods. In the opposite direction, concept relations that are used to charac-
terise events and contexts in ontology-based methods, are useful for validating
and refining concept detection results by cognition-based methods. In addi-
tion, detection of meanings (concepts, events and contexts) in these methods
is enhanced by adaptive learning methods. Especially, EF provides means to
effectively refine cognition-based and ontology-based methods by explaining
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reasons of false meaning detection. Meanwhile, the information (i.e., knowl-
edge, features (concepts) and classifiers) of these methods is a material to
extract metalevel features in adaptive learning methods, so that the latter
can effectively control meaning detection in the former. Therefore, it is ben-
eficial to develop a framework for unifying methods in the above mentioned
mutually-related categories.

(Derive events and contexts
from detected concepts)

(Use concept relations
as constraints)

(Enhance event and context detection)

(Enhance concept detection)

(Provide metalevel features (knowledge/features/
classifiers) for concept deteciton)

(Provide metalevel features (knowledge/concepts/
classifiers) for event and context detection)

Adaptive learning
Monitoring and controlling
meaning detection

Cognition-based method
Detection of concepts

Ontology-based method
Detection of events and contexts

Fig. 7 An illustration of the relation among three types of human-machine cooperation
methods (cognition-based, ontology-based and adaptive learning methods).
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60. Krüger, N.et al..: Deep hierarchies in the primate visual cortex: What can we learn for
computer vision? IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1847–1871 (2013)

61. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolu-
tional neural networks. In: P. Bartlett, F. Pereira, C. Burges, L. Bottou, K. Weinberger
(eds.) NIPS 25, pp. 1106–1114 (2012)

62. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In:
J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (eds.) NIPS 23,
pp. 1189–1197 (2010)

63. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes
by between-class attribute transfer. In: Proc. of CVPR 2009, pp. 951–958 (2009)

64. Lan, T., Raptis, M., Sigal, L., Mori, G.: From subcategories to visual composites: A
multi-level framework for object detection. In: Proc. of ICCV 2013, pp. 369–376 (2013)

65. Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., Ng, A.:
Building high-level features using large scale unsupervised learning. In: Proc. of ICML
2012 (2012)



Towards Large-Scale Multimedia Retrieval 37

66. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information
retrieval: State of the art and challenges. ACM Trans. Multimed. Comput. Commun.
Appl. 2(1), 1–19 (2006)

67. Li, J., Tian, Y., Huang, T., Gao, W.: Probabilistic multi-task learning for visual
saliency estimation in video. Int. J. Comput. Vis. 90(2), 150–165 (2010)

68. Li, X., Wang, D., Li, J., Zhang, B.: Video search in concept subspace: A text-like
paradigm. In: Proc. of CIVR 2007, pp. 603–610 (2007)

69. Lin, C.Y., Tseng, B.L., Smith, J.R.: Video collaborative annotation forum: Establishing
ground-truth labels on large multimedia datasets. In: Proc. of TRECVID 2003 (2003)

70. Litayem, S., Joly, A., Boujemaa, N.: Hash-based support vector machines approxima-
tion for large scale prediction. In: Proc. of BMVC 2012, pp. 86.1–86.11 (2012)

71. Liu, X., Zhuang, Y., Pan, Y.: A new approach to retrieve video by example video clip.
In: Proc. of MM 1999, pp. 41–44 (1999)

72. Liu, Y., Zhang, D., Lu, G., Ma, W.: A survey of content-based image retrieval with
high-level semantics. Pattern Recognit. 40(1), 262–282 (2007)

73. Lowe, D.: Object recognition from local scale-invariant features. In: Proc. of ICCV
1999, pp. 1150–1157 (1999)

74. Lu, Z., Grauman, K.: Story-driven summarization for egocentric video. In: Proc. of
CVPR 2013, pp. 2714–2721 (2013)

75. Ma, Z., Yang, Y., Xu, Z., Sebe, N., Hauptmann, A.G.: We are not equally negative:
Fine-grained labeling for multimedia event detection. In: Proc. of MM 2013, pp. 293–
302 (2013)

76. Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector
machines is efficient. In: Proc. of CVPR 2008, pp. 1–8 (2008)

77. Maji, S., Shakhnarovich, G.: Part and attribute discovery from relative annotations.
Int. J. Comput. Vis. 108(1-2), 82–96 (2014)

78. Marszalek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In: Proc.
of CVPR 2007, pp. 1–7 (2007)

79. Mazloom, M., Habibian, A., Snoek, C.G.: Querying for video events by semantic sig-
natures from few examples. In: Proc. of MM 2013, pp. 609–612 (2013)

80. Merler, M., Huang, B., Xie, L., Hua, G., Natsev, A.: Semantic model vectors for com-
plex video event recognition. IEEE Trans. Multimed. 14(1), 88–101 (2012)

81. Monaco J.: How to Read a Film. Oxford University Press (1981)
82. Nam, J., Alghoniemy, M., Tewfik, A.: Audio-visual content-based violent scene char-

acterization. In: Proc. of ICIP 98, pp. 353–357 (1998)
83. Naphade, M., Smith, J., Tesic, J., Chang, S.F., Hsu, W., Kennedy, L., Hauptmann,

A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimed. 13(3),
86–91 (2006)

84. Naphade, M.R., Smith, J.R.: On the detection of semantic concepts at TRECVID. In:
Proc. of MM 2004, pp. 660–667 (2004)
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