
Multimedia Retrieval Exercise Course
9. Simple Specific Object Recognition System

Kimiaki Shirahama, D.E.

Research Group for Pattern Recognition
Institute for Vision and Graphics
University of Siegen, Germany

Overview of Today’s Lesson

• Simple specific object recognition

• Implementation
 Load the information about database images
 Load all SURF features in database images
 Search the most similar SURF features

• Suggestion to improve the recognition performance

Simple Specific Object Recognition

For each SURF feature in the query image, find the most similar
SURF feature from database images
 Give one vote to the image containing the most similar
 SURF feature
Return database images with many votes as a recognition result

0: 0.32, 0.54, 0.01 …
1: 0.24, 0.04, 0.95 …
2: 0.73, 0.80, 0.43 …
3: 0.01, 0.42, 0.10 …

(Query image)

(Database images)

0: 0.32, 0.56, 0.03 …
1: 0.04, 0.01, 0.50 …
2: 0.04, 0.40, 0.13 …

0: 0.21, 0.24, 0.13 …
1: 0.54, 0.84, 0.25 …
2: 0.74, 0.33, 0.43 …

0: 0.68, 0.84, 0.43 …
1: 0.02, 0.80, 0.15 …
2: 0.32, 0.11, 0.62 …

0: 0.28, 0.24, 0.65 …
1: 0.45, 0.24, 0.11 …
2: 0.72, 0.77, 0.40 …

Overview of Simple Specific Object Recognition

1. Load the information about database images
 (in a similar way to that of QBE)

2. Load SURF features extracted from database images

3. Extract SURF features from a query image (refer to the last lesson)

4. For each SURF feature in the query image, search SURF features in
 database images and find the most similar one
 Increment the vote counter of the image containing
 the most similar SURF feature
 (slightly modify the “nearestNeighbor” function in the last lesson)

5. Sort database images in terms of numbers of votes, and output
 database images with many votes (in a similar way to that of QBE)

(You can evaluate the recognition performance using Average Precision,
studied in the 6-th lesson)

Process “ids.txt” and
“surf_features.txt” in
the last lesson

Load the Information about Database Images

I recommend you to use the following kind of structure to store the image information

 struct ImageInfo{
 int img_id;
 string filename;
 int vote;
 };

Initialise the “vector” of ImageInfo using image IDs and filenames, stored in “ids.txt”

Note:
1. Refer to the 6-th slide in the 4-th lesson
2. The “split” function in the 7-th slide in the 4-th lesson is very useful for parsing
 each line in “ids.txt”.

Load All SURF Features in Database Images

Using “surf_features.txt”, I create the following three variables
 1. CvMat: Matrix where each row represents one SURF feature
 2. vector of int: This array stores image IDs containing SURF features in CvMat
 3. vector of int: This array stores laplacians of SURF features in CvMat
NOTE: The order of elements in the above three variables has to be the same!
(The 1st row in CvMat and the 1st elements in two vectors are related to the 1st SURF feature
in “surf_features.txt”.)

CvMat: Structure for storing a matrix in OpenCV
(This structure now becomes old, cv::Mat is used more often. You can use cv::Mat or another structure)

typedef struct CvMat {
 …
 union {
 uchar* ptr;
 short* s;
 int* i;
 float* fl;
 double* db;
 } data; // One-dimensional array where each element in a matrix is stored
 …
 int cols; // Number of columns
 int width; // Number of rows

} CvMat;

Tips of CvMat

1. Initialisation of CvMat
 CvMat* cvCreateMat(int rows, int cols, int type)
 - rows: Number of SURF features to be read
 - cols: Number of dimensions of a SURF features (i.e. 128)
 - type: I used CV_32FC1, meaning that each element in CvMat is a 32bit floating number

2. Setting a value to an element in CvMat
 CV_MAT_ELEM(matrix, elemtype, row, col) = value
 (CV_MAT_ELEM is a macro)
 - matrix: “Content pointed by a pointer of CvMat”
 - elemtype: In my case, “float”
 - row, col: Position of an element (starting with “0”)

3. Accessing an element in CvMat
 Use the pointer access to the “data” of CvMat
 If “CvMat* mat” is used, each element can be accessed by mat -> data.<ptr|s|i|fl|db>
 (more specifically, in my case, mat -> data.fl)

 Accessing an element in CvMat is similar to accessing a pixel in IplImage->ImageData
 (refer to the 6-th slide in the 2-nd lesson)

0-th row with SURF_DIM (128) elements
The pointer to the element at (0,0)
is “mat->data.fl + 0 * SURF_DIM”;

1-th row with SURF_DIM (128) elements
The pointer to the element at (0,0)
is “mat->data.fl + 1 * SURF_DIM”;

Search the Most Similar SURF Feature

int searchNearestNeighbor(float *q_surf, int q_lap, vector<int> &surf_ids, vector<int> &surf_laps, CvMat* surfs){

 // q_surf: One SURF feature in the query image is represented by this one-dimensional array with 128 elements
 // q_lap; Laplacian of q_surf
 // surfs: CvMat storing all SURF features in database images
 // surf_ids: Vector storing IDs of database images, containing SURF features in “surfs”
 // surf_laps: Vector storing laplacians for SURF features in “surfs”

 // For q_surf, find the most similar row in “surfs”
 for(int i = 0; i < surfs->rows; i++){

 // Get the pointer to the i-th row in “surf”
 float* surf = (float *)(surfs->data.fl + i * SURF_DIM);
 // The other things are the same to “nearestNeighbor” in the last lesson

 }

 // In my implementation, I don’t use THRESHOLD as “nearestNeighbor” in the last lesson
 // But, I think, using THRESHOLD and not-using it lead to nearly the same results

}

To Improve Simple Specific Object Recognition

To improve the method in today’s lesson, you can try the following issues:

1. Match SURF features by considering their spatial relation

 (Each line between two matched SURF features should intersect another line)

 RANdom SAmple Consensus (RANSAC) is one of the most famous approaches
 for this problem (RANSAC has been already implemented in OpenCV)

2. Develop a method which can search the most similar SURF features much more efficiently
 Use a special type of data structure, such as kd-Tree and Locality Sensitive
 Hashing (LSH), both of which have been already implemented in OpenCV

