Pattern Recognition Exercises Sheet 1 "Bayes Classification"

Exercises: M.Sc. Chen Li, M.Sc. Cong Yang Lectures: Prof. Dr.-Ing. Marcin Grzegorzek Pattern Recognition Group, University of Siegen http://www.pr.informatik.uni-siegen.de

Date of Issue:	April 22, 2014
Submission Deadline:	May 1, 2014
Submission Form:	Email to chen.li@uni-siegen.de with a PDF attachment
File Name:	PR-ES1-Surname.pdf

Exercise Discussion: May 6, 2014, 8:30am, H-F 001

1 Bayes Decision Theory – Fundamental Terms (6 Points)

Please explain the following terms associated with the Bayes classification theory, namely the *a priori probability*, the *a posteriori probability*, and the *likelihood density function* for a particular class ω and a particular pattern \boldsymbol{x} to be classified! Please do it by giving an example of a statistical classification task! Please describe the example dividing it into the the training and the classification phase!

2 Bayes Decision Theory (6 Points)

The probability for the occurrence of an emotion in a particular online chat (event A) amounts to P(A) = 0.005. A method for automatic detection of emotions in chats has been developed. B denotes the event that the method has detected an emotion. The probability P(B|A) (method has detected an emotion, if an emotion was present in a chat) is 99.9%, while the probability $P(B|\bar{A})$ (method has detected an emotion, although no emotion was present) amounts to 0.1%.

How is then the probability that an emoticon really occurs in a chat, if the method has returned a positive detection result?

3 Classifiers Based on Bayes Decision Theory (6 Points)

In a two-class problem with a single feature x the pdfs are Gaussian with variance $\sigma^2 = \frac{1}{4}$ for both classes and mean values 0 and 2.

If $P(\omega_1) = P(\omega_2) = \frac{1}{2}$, compute the threshold value x_0 (a) for minimum error probability and (b) for minimum risk, with $\lambda_{12} = 0.5$ and $\lambda_{21} = 1.0$

4 The Bayesian Classifier for Normally Distributed Classes (6P)

In a three-class, two-dimensional problem the feature vectors in each class are normally distributed with the following covariance matrix:

$$\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2 = \boldsymbol{\Sigma}_3 = \begin{bmatrix} 1.2 & 0.4 \\ 0.4 & 1.8 \end{bmatrix}$$

The mean vectors for the classes are $\boldsymbol{\mu}_1 = [0.1, 0.1]^{\mathrm{T}}, \boldsymbol{\mu}_2 = [2.1, 1.9]^{\mathrm{T}}, \boldsymbol{\mu}_3 = [-1.5, 2.0]^{\mathrm{T}}.$ Assuming that the classes are equiprobable $(P(\omega_1) = P(\omega_2) = P(\omega_3))$, please classify the feature vector $\boldsymbol{x} = [1.4, 1.2]^{\mathrm{T}}$ according to the Bayes minimum error probability classifier!

5 Maximum Likelihood Parameter Estimation (6P)

The normally distributed training data of a class ω consists of N training samples described by one-dimensional features x_1, x_2, \ldots, x_N . The standard deviation for the data is known and amounts to σ . Please estimate the the mean value μ for the training data using the Maximum Likelihood optimisation! Please use the so called log-likelihood function for this!