Pattern Recognition Exercises Sheet 3 "Feature Selection"

Exercises: M.Sc. Chen Li, M.Sc. Cong Yang Lectures: Prof. Dr.-Ing. Marcin Grzegorzek Pattern Recognition Group, University of Siegen http://www.pr.informatik.uni-siegen.de

Date of Issue:	May 20, 2014
Submission Deadline:	May 29, 2014
Submission Form:	Email to chen.li@uni-siegen.de with a PDF attachment
File Name:	PR-ES3-Surname.pdf

Exercise Discussion: June 3, 2014, 8:30am, H-F 001

1 Fundamentals of Algebra (10 Points)

Show that the matrix

$$\boldsymbol{A} = \begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\ \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{-1}{\sqrt{n(n-1)}} & \frac{-1}{\sqrt{n(n-1)}} & \frac{-1}{\sqrt{n(n-1)}} & \cdots & \frac{n-1}{\sqrt{n(n-1)}} \end{bmatrix}$$

is orthogonal, that is, $AA^{\mathrm{T}} = I$.

2 Statistical Hypothesis Testing (10P)

Let us consider an experiment with a random variable x with N = 12 observed values of $\sigma = 0.5$. The resulting average is $\overline{x} = 2$ and the significance level is assumed to be $\rho = 0.1$. Test if the hypothesis $\hat{\mu} = 1$ is true.

3 *t*-Test in Feature Selection (10P)

The sample measurements of a feature in two classes are

Using the *t*-Test test whether this feature is informative enough. The significance level has to be assumed as $\rho = 0.005$.