Pattern Recognition Exercises Sheet 4 "Feature Transformation and Extraction"

Exercises: M.Sc. Chen Li, M.Sc. Cong Yang Lectures: Prof. Dr.-Ing. Marcin Grzegorzek Pattern Recognition Group, University of Siegen http://www.pr.informatik.uni-siegen.de

Date of Issue:	June 3, 2014
Submission Deadline:	June 12, 2014
Submission Form:	Email to cong.yang@uni-siegen.de with a PDF attachment
File Name:	PR-ES4-Surname.pdf

Exercise Discussion: June 17, 2014, 8:30am, H-F 001

1 The Karhunen-Loeve Transform (8 Points)

The correlation matrix of a vector \boldsymbol{x} is given by

$$\boldsymbol{R_x} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

Compute the KL transform of an input vector $\boldsymbol{x} = [x_1, x_2, x_3]^{\mathrm{T}}$. Explain the relevance of the KL transform (Principal Component Analysis) to feature dimensionality reduction in pattern recognition.

2 The Singular Vector Decomposition (8P)

Compute the SVD representation of

$$\mathbf{X} = \left[\begin{array}{rrr} 1 & 0 \\ 1 & 2 \\ 0 & 1 \end{array} \right]$$

Explain its relevance for feature generation.

3 First-Order Statistics Features (7P)

Consider the following binary image array:

$$\boldsymbol{I} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Compute the first and second moments (m_1, m_2) and central moments (μ_1, μ_2) for this image.