Pattern Recognition Exercises Sheet 4 "Feature Transformation and Extraction"

Exercises: M.Sc. Chen Li, M.Sc. Cong Yang
Lectures: Prof. Dr.-Ing. Marcin Grzegorzek
Pattern Recognition Group, University of Siegen
http://www.pr.informatik.uni-siegen.de

Date of Issue:
Submission Deadline:
Submission Form:
File Name:

June 3, 2014
June 12, 2014
Email to cong.yang@uni-siegen.de with a PDF attachment PR-ES4-Surname.pdf

1 The Karhunen-Loeve Transform (8 Points)

The correlation matrix of a vector \boldsymbol{x} is given by

$$
\boldsymbol{R}_{\boldsymbol{x}}=\left[\begin{array}{rrr}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

Compute the KL transform of an input vector $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}\right]^{\mathrm{T}}$. Explain the relevance of the KL transform (Principal Component Analysis) to feature dimensionality reduction in pattern recognition.

2 The Singular Vector Decomposition (8P)

Compute the SVD representation of

$$
\boldsymbol{X}=\left[\begin{array}{ll}
1 & 0 \\
1 & 2 \\
0 & 1
\end{array}\right] .
$$

Explain its relevance for feature generation.

3 First-Order Statistics Features (7P)

Consider the following binary image array:

$$
\boldsymbol{I}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Compute the first and second moments $\left(m_{1}, m_{2}\right)$ and central moments $\left(\mu_{1}, \mu_{2}\right)$ for this image.

