
Generic Object Recognition

11 Extraction of BoVW Representation

Kimiaki Shirahama, D.E.

Research Group for Pattern Recognition Institute for Vision and Graphics University of Siegen, Germany

Overview of Today's Lesson

Implementing BoVW Extraction

That's all ☺

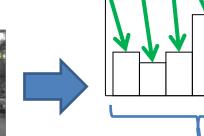
Overview of Generic Object Recognition Using Bag of Visual Words (BoVW)

1. Visual word extraction: Organise local features into groups of similar features

The center of each group becomes a visual word

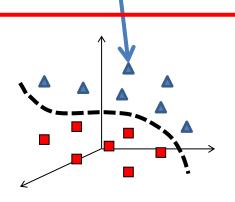
More than 100,000 local features are organised into more than 1,000 groups. In other words, more than 1,000 visual words are extracted

Today

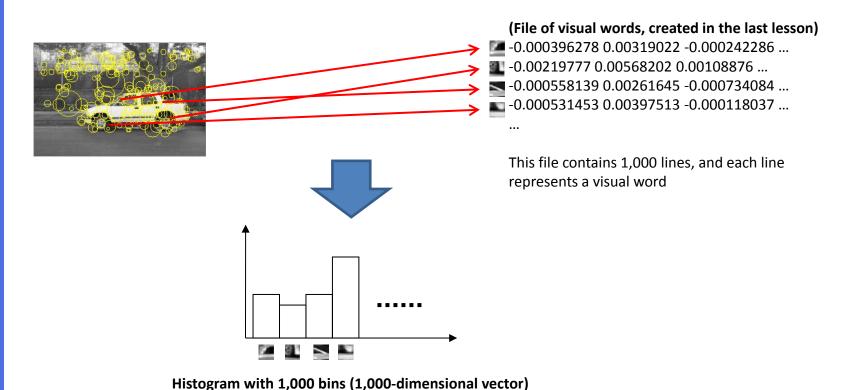

2. BoVW representation: Assign local features in each image to the most similar visual words

For each visual words, the number of assigned local features becomes the value of a bin

The number of dimensions of a histogram (vector) is more than 1,000.


3. Classification: Extract the boundary between images where a certain object is shown and images where it is absent

One image represented by BoVW is represented as a point in the high-dimensional vector space


Because of the high-dimensionality, simple similarity measures (e.g., Euclidian distance and cosine distance) do not work. Support Vector Machine (SVM) or other effective classifiers for high-dimensional data must be used.

I spent more than one year to find this point 🖯

Overview of BoVW Extraction

- 1. Extract SURF features from an image <u>Create a histogram where each bin represents the frequency of a visual word</u>
- 2. For each SURF feature,
 - Find the most similar visual word
 - Increment the bin corresponding to the most similar visual word

Pseudo Code of BoVW Extraction

```
vector< vector<double> > visual words; // You can use any kind of matrix, such as cv::Mat
loadVisualWords(filename of visual words, visual words);
ofstream bovw file(Text filename where BoVW representations of images are stored)
// To get image filenames, you can re-use a part of the code implemented in the 3-rd or 8-th lesson
For each image filename, do the following things:
     vector<double> bovw; // Histogram representing the frequency of each visual word (any one-dimensional array is OK)
     extractBoVWRepresentation(image filename, bovw, visual words);
     saveBoVWRepresentation(bovw file, bovw);
end of "For each image filename, ..."
extractBoVWRepresentation(filename, bovw, visual words){
     // Extract SURF features from the image specified by filename (see slides in the 7-th and 8-th lesson)
     // If no SURF feature is extracted, set all bin values in bovw to "0"
     for i (representing a SURF feature ID)
          // Compute the similarity between i-th SURF feature and a visual word as their Euclidian distance
          int visual word id = searchMostSimilarVisualWord(i-th SURF feature, visual words);
          bovw[visual word id]++;
     end "for i"
     // Normalise bovw so that the sum of bin values becomes "1" (in the same way to histogram-based image retrieval)
     normaliseHistogram(bovw);
Please make sure that your code does not have any bug!
```

Even one small bug can cause a very disappointing result of generic object recognition.