
Generic Object Recognition
12 Classification by Support Vector Machine

Kimiaki Shirahama, D.E.

Research Group for Pattern Recognition
Institute for Vision and Graphics
University of Siegen, Germany

Overview of Today’s Lesson

 Support Vector Machine (SVM) on BoVWs
 Characteristics of SVM

 LIBSVM (famous SVM software)

 How to use LIBSVM

 Finishing a generic object recognition method by applying LIBSVM to BoVWs

 Loading the information of images
 Preparing files for LIBSVM
 Setting parameters of LIBSVM
 Reading a LIBSVM result

 Suggestions to improve the recognition performance

Overview of Generic Object Recognition
Using Bag of Visual Words (BoVW)

1. Visual word extraction: Organise local features
into groups of similar features
 The center of each group becomes a visual word

2. BoVW representation: Assign local features in each
image to the most similar visual words
 For each visual words, the number of assigned local
 features becomes the value of a bin

3. Classification: Extract the boundary between images where
a certain object is shown and images where it is absent
 One image represented by BoVW is represented as
 a point in the high-dimensional vector space

More than 100,000 local features are organised into
more than 1,000 groups. In other words, more than 1,000
visual words are extracted

The number of dimensions of a histogram
(vector) is more than 1,000.

Because of the high-dimensionality, simple similarity measures (e.g., Euclidian
distance and cosine distance) do not work. Support Vector Machine (SVM) or
other effective classifiers for high-dimensional data must be used.
I spent more than one year to find this point

Today

Training examples
(having the information from humans:
A machine learns from these examples)

Support Vector Machine on BoVWs
- My Personal Interpretation of SVM -

Weight Kernel function (similarity
between xi and x)

 Positive examples: Images where a target object is shown
 Negative examples: Images where the target object is not shown
 Test examples: Images where displayed objects are unknown
 (not-having the information from humans)

SVM extracts a useful similarity measure which combines weighted similarities
of a test example to training examples

(Decision function of SVM)

?

?

2||||
exp),(i

i

xx
xxK

Euclidian distance

The optimal set of
weight is computed
using training examples

Characteristics of SVM

Advantage
1. Effectiveness for high-dimensional data: Placing a classification
boundary in the middle between positive and negative examples,
is theoretically proven to be independent of the number of dimensions.

2. Effectiveness for a small number of training data: A classification
boundary is not probabilistically determined, but determined based
on the geometry of positive and negative examples.

3. Convergence to the optimal solution: The objective function
for SVM training is convex.

4. Reduction of the computational cost for SVM test: Only training
examples selected as support vectors are needed to test the SVM.

Disadvantage
1. Quadratic increase of the computation time and the memory space depending on the number of training
examples: In the case of extracting a non-linear classification boundary (non-linear SVM), it is needed to compute
the similarity for each pair of training examples.

2. Difficulty of understanding results: Because of the high-dimensionality, it is difficult to know why good or bad
classification is obtained. Especially, this is much difficult for non-linear SVMs.

?

?

Classification
boundary

LIBSVM

 One of the most famous SVM software (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 A lot of SVM variations and options are supported
 Fast SVM training technique is implemented

 Another most famous software is SVMlight

 To my best knowledge, over-flow sometimes happens in SVM in OpenCV

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

How to Use LIBSVM

1. Download LIBSVM from http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2. Run LIBSVM

Windows: Run executable files in the folder “windows”
Linux and Mac: Compile the source codes with “make” to create executable files

Open a command prompt or terminal

SVM training: svm-train (or ./svm-train) [options] training_set_file [model_file]
training_set_file: A file where training examples are written
model_file: A file where a trained SVM is output (if this is not specified,
 “training_set_file.model” is generated)

Example: svm-train ..\heart_scale

SVM test: svm-predict (or ./svm-predict) [options] test_file model_file output_file
test_file: A file where test examples are written
model_file: A file generated by SVM training
output_file: A file where classification results of test examples are written

Example: svm-predict ..\heart_scale.t ..\heart_scale.model ..\heart_scale.t.res.txt

NOTE: I created two files, the one named “heart_scale” contains the first 180 examples
in the original “heart_scale”, the remaining 90 examples are contained in “heart_scale.t”.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Overview of a Code Using LIBSVM

Purpose: Perform classification (generic object recognition) by running LIBSVM in a C++ code

1. Load the information of all images together with their BoVW representations

for each object category

 2. Output text files used for SVM training and test

 3. Run LIBSVM commands to train and test an SVM (Use “system” to run
 terminal commands in a C or C++ code)

 4. Read the result from the file output by LIBSVM

 5. Sort images based on SVM outputs and make an HTML file of the result

end of for

Loading the Information of All Images

My code stores the information of all images using a 2-dimensional vector, where each
element is defined by the following structure:
struct ImageInfo{
 string label; // Object class such as accordion, airplanes etc.
 int id; // XXXX in “image_XXXX.jpg”
 string filename; // Image filename
 vector<double> bovw; // BoVW representation
 double val; // Initialised as “-1”
};

accordion

airplanes

anchor

ant

vector< vector<ImageInfo> > imgs

Each row is vector<ImageInfo>,
and has a different number of
“ImageInfo”s

Each element can be accessed
by imgs[i][j]

Preparing Files for LIBSVM (1/2)

Training examples
(first 20 images in each class)

For each object class, I define training examples (positive and negative),
and test examples in the following way:

accordion

airplanes

anchor

ant

An example case where images in which airplanes are shown are
distinguished from the other images

Test examples
(the rest of images in each class)

Positive examples

Negative examples

Preparing Files for LIBSVM (2/2)

(File of training examples)
+1 1:0.00404858 2:0 3:0 4:0.0242915 5:0 6:0.00404858 7:0 8:0 9:0 10:0 11:0 12:0 13:0 14:0.00404858 15:0 16:0.00404858 …
…
-1 1:0.00632911 2:0.0126582 3:0.00632911 4:0.00632911 5:0 6:0 7:0 8:0 9:0 10:0 11:0 12:0 13:0 14:0 15:0 16:0 17:0 18:0 …
…

(File of test examples)
0 1:0 2:0 3:0 4:0 5:0 6:0 7:0.00766284 8:0 9:0 10:0 11:0 12:0.00383142 13:0 14:0 15:0 16:0 17:0.00383142 18:0.00766284 …
0 1:0.0044843 2:0 3:0 4:0 5:0 6:0 7:0.00896861 8:0 9:0 10:0.0044843 11:0 12:0 13:0 14:0.00896861 15:0 16:0 17:0 18:0 …
…

Positive examples

Negative examples

Test examples

One line of a LIBSVM file has the following format:

<label> 1:<1st dimension value> 2:<2nd dimension value> … 1000:<1000th dimension value>

I set labels of positive, negative and test examples to +1, -1 and 0, respectively. Any value can be
used for labels of test examples, because we evaluate the performance on test examples using our
C++ code.

NOTE:
1. If you want, you can use the “sparse” file format where only values other than 0 are written.
2. To further improve the computational efficiency, you can use the “pre-computed kernel” format.
3. Moreover, you don’t have to output data into a file if you use LIBSVM as a library in C++.
 See README of LIBSVM for more details.

Setting Parameters of LIBSVM

I set three parameters of LIBSVM as follows:
1. γ: This determines the complexity of a classification boundary

)||||exp(
||||

exp),(2
2

i
i

i xx
xx

xxK

2. C: This determines the tolerance of miss-classified training examples
 In my experience, C=2 is a reasonable choice.
3. -b 1: This is needed to let LIBSVM output continuous values for test examples
 If this is not set, LIBSVM just output the predicted class label for each test example
 If “-b 1” is used, LIBSVM outputs the probability that each test example belongs to a class.
 This probability approximates the distance of the test example to the classification boundary.

Usual formulation LIBSVM formulation

Small γ
Training examples
which are difficult to
classify, are ignored
(The boundary may be
too simple to accurately
classify test examples)

Large γ
Training examples are
forced to be correctly
classified
(The complex boundary
does not necessarily work
for test examples (over-fitting))

One reasonable choice is to set γ to the inverse
of the average (squared) Euclidian distance
among training examples
 For any , its scaling by γ is probably
reasonable.

2|||| ixx

Reading a Result by LIBSVM

(A result file output by LIBSVM)
labels 1 -1
-1 0.289552 0.710448
1 0.952875 0.0471254
-1 0.12747 0.87253
-1 0.0421646 0.957835
1 0.757121 0.242879
1 0.999989 1.08845e-005
...

- The first column represents the predicted class label for a test example:
 If the probability for the class “1” is more than 0.5, “1” is assigned, otherwise, “-1” is assigned.
- The second column represents the probability that a test example belongs to the class “1”
- The third column represents the probability that a test example belongs to the class “-1”

Probability that a target object is shown in a test example

Read values in the second column and set them to the “val” fields for test examples.
The list where test examples are sorted in terms of “val” fields, is a recognition result.

Please refer to the 10-th slide in the 4-th lesson for sorting a vector of ImageInfo.
In addition, by referring to the slides in the 6-th lesson, you can compute the average
precision as the recognition performance.

To Further Improve the Recognition Performance

1. Currently, we only use the first 10 images for visual word extraction.
 Extract visual words using more than 1,000,000 SURF features, which are
randomly sampled from all of 9,144 images.

2. Change SURF features to Color SIFT features, which are more robust to
illumination changes.
 The “colordescriptor” on the following URL is very useful for this purpose.
 http://koen.me/research/colordescriptors/
 In my experience, I recommend you to use Opponent SIFT or RGB SIFT
 features for densely sampled local regions

3. Use more training examples. You can use addition images that are collected
on image sharing sites like Flickr.
 I recommend to use more than 10,000 training examples. To reduce the
 computational cost, it is necessary to use LIBSVM with the pre-computed
 kernel in the library mode

http://koen.me/research/colordescriptors/
http://koen.me/research/colordescriptors/
http://koen.me/research/colordescriptors/

Thank you!

All contents in this course (Multimedia Retrieval Exercise) have
been finished.

On next Thursday, only if you have some questions or problems
in your implementation, please come to the lesson. Otherwise,
you don’t have to come.

