
Multimedia Retrieval Exercise Course
10 Bag of Visual Words and Support Vector Machine

Kimiaki Shirahama, D.E.

Research Group for Pattern Recognition
Institute for Vision and Graphics
University of Siegen, Germany

Overview of Today’s Lesson

• Generic object recognition

• Generic object recognition using Bag of Visual Words (BoVW)

• Short break

• Procedures for generic object recognition using BoVW
 Visual word extraction
 BoVW representation
 Classification

• Implementing visual word extract by OpenCV

Specific Object Recognition vs. Generic Object Recognition

Specific object recognition: Detect instances of the same object in different images

Generic object recognition: Identify the class (category) of objects in images
 Diverse visual appearances of objects in the same class (Inner-class variance)

(Assume that each image is represented
by a 3-dimensional vector)

Generic Object Recognition
Using Bag of Visual Words (BoVW) (1/2)

Analogy with document retrieval
… Dortmund … Lewandowski
… Kagawa … Dortmund …
….

… Baseball … Major …
Yankees … New York …
….

(Retrieving documents
about Football)

Retrieved because this
contains a lot of words
related to Football

Not retrieved because
this does not contain
words related to Football

What are words in images? Characteristic (typical) local features

Bag of Visual Words (BoVW) is the representation of an image using a histogram
where each bin represents the frequency of a certain characteristic local feature

Generic Object Recognition
Using Bag of Visual Words (BoVW) (2/2)

1. Visual word extraction: Organise local features
into groups of similar features
 The center of each group becomes a visual word

2. BoVW representation: Assign local features in each
image to the most similar visual words
 For each visual words, the number of assigned local
 features becomes the value of a bin

3. Classification: Extract the boundary between images where
a certain object is shown and images where it is absent
 One image represented by BoVW is represented as
 a point in the high-dimensional vector space

More than 100,000 local features are organised into
more than 1,000 groups. In other words, more than 1,000
visual words are extracted

The number of dimensions of a histogram
(vector) is more than 1,000.

Because of the high-dimensionality, simple similarity measures (e.g., Euclidian
distance and cosine distance) do not work. Support Vector Machine (SVM) or
other effective classifiers for high-dimensional data must be used.
I spent more than one year to find this point 

Concepts of BoVW

1. Robust to occlusion and deformation: Although a part of an object is occluded
or deformed, as long as some visual features that characterise the object are
contained in an image, appropriate recognition can be performed.

2. BoVW does not consider the overall shape of an object: In my experience, this
kind of precise approach does not work for real-world images with cluttered backgrounds.
Rather than this, a simple approach works much better.

3. Local features (SIFT or SURF) are already robust to scaling, rotation,
viewpoint changes and illumination

Although a part of the bike is invisible due
to the person, visual words characterising
bikes should be extracted from these regions.

Even if shapes of these bikes are significantly different,
visual words characterinsig an engine, wheels and handle
should be extracted from both of them.

Although visual words are extracted from the background of an image, most of their effects can be removed
using a large number of visual words. In other words, as long as the background does not contain many local
features that are very very similar to some parts of an object, recognition works correctly.

Short Break (My Personal Perspective)

Machine learning is the discipline to classify examples

NOTE: Each example is represented as a feature
In this context, one image is an example, a feature is the BoVW
representation of the image (Don’t confuse local features with BoVW)

1. Similarity search: Search the most similar example in the database
to a given example

2. Unsupervised learning (Clustering): Organise examples into groups
each of which contains similar examples
 Visual word extraction

3. Supervised learning (Classification): Given examples with labels, extract
a model which can distinguish examples with different labels
Simply speaking, supervised learning finds values in a feature, where examples
with a certain label have these values, and examples with other labels do not have them

 Image classification

Clustering of SURF Features
K-means clustering: One of the most famous and practical clustering method
Alternatively repeat updating means of K clusters, and assigning each example
(in this case, SURF feature) to the nearest cluster among K clusters

1. Assuming K=4 clusters and
their centers are randomly
determined, assign each example
to the nearest cluster

2. Update each center using
assigned examples
→ Centers move

3. Using updated centers, assign each example
to the nearest cluster
→ Repeat the update of centers and the assignment
of examples until centers will not move

BoVW Extraction

1. Assign each local features in an image to the nearest cluster (i.e., visual word)
2. For each visual word, count the number of local features
I think there is no problem in this process

(BoVW
representation)

Support Vector Machine on BoVWs (1/2)
- My Personal Interpretation of SVM -

Problem: Given training examples, predict the label of a test example
In our case, training examples consists of

- Positive examples where a certain object (e.g., Car) is shown
- Negative examples where other objects (e.g., objects other than Car) is shown

For test examples, we don’t know if the object is shown or not
NOTE: Examples mean images represented by BoVW

?

?

Support Vector Machine on BoVWs (2/2)
- My Personal Interpretation of SVM -

Weight Kernel function (similarity
between xi and x)

 If x is similar to positive examples, +αiK(xi,x)
 If x is similar to negative examples, -αiK(xi,x)

If the combined similarity is larger
than 0, the object (Car) is regarded
to be shown in x,
otherwise, it is not shown in x

SVM extracts a useful similarity measure which combines weighted similarities
of a test example to training examples

(Decision function of SVM)

?

?








 




2||||
exp),(i

i

xx
xxK

Euclidian distance

The optimal set of
weight is computed
using training examples

K-means clustering of SURF Features
by OpenCV

Apply K-means clustering to about 300,000 SURF features, stored in “surf_features.txt” (created in the 8-th lesson).
Group them into 1,000 clusters (visual words), and output obtained visual words into a text file.

double kmeans(const Mat& examples, int clusterCount, Mat& labels,
 TermCriteria termcrit, int attempts, int flags, Mat* centers)
- examples: Floating-point matrix of examples, one row per example (i.e., an example is a SURF feature)
- clusterCount: The number of clusters (i.e., number of visual words)
- labels: Cluster indices of examples (we don’t use this, just feed an empty Mat)
- Termcrit: Specifies maximum number of iterations and/or distance that centers can move between subsequent iterations)
 (I only set the maximum number of iterations to “1,000”)
- Attempts: How many times the algorithm is executed using different initial labelings (I set it to “1”)
- Flags: How to set initial cluster centers (I used KMEANS_PP_CENTERS)
- Centers: The output matrix of cluster centers, one row per each cluster center
 (Output the content of this matrix into a text file) NOTE: I think “Mat* centers” is wrong, “Mat& centers” is right

For more detail, please refer to http://opencv.jp/opencv-2svn_org/cpp/core_clustering.html?highlight=kmeans

cv::Mat: Structure (class) for dealing with a matrix in OpenCV
- Initialisation: cv::Mat mat = cv::Mat(int rows, int cols, int type) (type should be “CV_32F”)
- To obtain the number of rows or columns, you can use “mat.row” or “mat.col”
- To obtain the pointer to the i-th row, you can use “float* ptr = mat.ptr<float>(i);”
 (after that, use “ptr” just like a normal array)
- To access the element at (i,j) position, you can use “vws.at<float>(i,j)”

For more detail, please refer to http://opencv.jp/opencv-2svn_org/cpp/core_basic_structures.html#Mat

http://opencv.jp/opencv-2svn_org/cpp/core_clustering.html?highlight=kmeans
http://opencv.jp/opencv-2svn_org/cpp/core_clustering.html?highlight=kmeans
http://opencv.jp/opencv-2svn_org/cpp/core_clustering.html?highlight=kmeans
http://opencv.jp/opencv-2svn_org/cpp/core_clustering.html?highlight=kmeans
http://opencv.jp/opencv-2svn_org/cpp/core_basic_structures.html#Mat
http://opencv.jp/opencv-2svn_org/cpp/core_basic_structures.html#Mat
http://opencv.jp/opencv-2svn_org/cpp/core_basic_structures.html#Mat
http://opencv.jp/opencv-2svn_org/cpp/core_basic_structures.html#Mat

Example Code

Mat surfs;
loadSURFFeatures(SURF_FILE, surfs); // Implement this function by yourself

int cluster_num = 1000;
Mat cluster_ids;
TermCriteria term_cri = TermCriteria(TermCriteria::MAX_ITER, 1000, 0);
int rep_num = 1;
Mat centers;

double tt = (double)cvGetTickCount();
cout << "### k-means clustering for extracting visual words ###" << endl;
kmeans(surfs, cluster_num, cluster_ids, term_cri, rep_num, KMEANS_PP_CENTERS, centers);
tt = (double)cvGetTickCount() - tt;
cout << ">> Time required for k-means clustering = " << (tt / (cvGetTickFrequency()*1000.0*1000.0)) << " sec" << endl;

outputVisualWords(VW_FILE, centers, cluster_num); // Implement this function by yourself

In my case, clustering 297,660 SURF features into 1,000 clusters, took
2,014 seconds. The CPU of my laptop is i7. If your laptop’s CPU is i3 or i5,
much more time may be needed. I think the best way is to implement
a clustering code in this lesson and run the code before you will sleep 

