Einführung in die Informatik II

III.4 Visualisierung von 3D-Daten

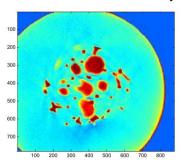
Prof. Dr.-Ing. Marcin Grzegorzek¹

Forschungsgruppe für Mustererkennung www.pr.informatik.uni-siegen.de

Institut für Bildinformatik Universität Siegen

¹Die im Rahmen dieser Lehrveranstaltung verwendeten Lernmaterialien wurden uns zum Großteil von Herrn Prof. Dr. Wolfgang Wiechert und Herrn Prof. Dr. Roland Reichardt zur Verfügung gestellt.

Inhaltsverzeichnis


- I. MATLAB-Einführung
- II. Algorithmen
- III. MATLAB-Fortsetzung
 - 1. Internet und Werkzeuge
 - 2. Dateien
 - 3. Visualisierung
 - 4. Visualisierung von 3D-Daten
 - 5. Optimierung

Was sind 3D-Daten?

- Typische 3D-Daten im Maschinenbau:
 - Konstruiertes Bauteil
 - Gemessene Werte (z.B. Qualitätssicherung)
 - Berechnete Werte (z.B. Computersimulationen)
- 3D-Daten
 - Wo:
 - Drei Koordinaten (x,y und z)
 - Typischerweise kartesisches Koordinatensystem.
 - Was:
 - Ein Wert an dieser Position (Skalar)
 - Ein Vektor an dieser Position

Beispiel Werkstofftechnik

- Computertomogramm (ct)von Metallschäumen
 - ct Daten werden analysiert und 3D-Struktur des Metallschaums zu berechnen
 - □ 3D-Daten → FEM Analyse

Beispiel

- Luftdruck in bestimmter Höhe
- Festigkeit in Bauteil
- Computertomographie
- Also: P(x,y,z), Wert

Vektor:

- Windrichtung in bestimmter Höhe
- Spannung im Bauteil
- Also: P(x,y,z), W(x,y,z)

Beispieldaten in Matlab: "Wind"

- In Matlab werden Beispieldaten zu Verfügung gestellt:
 - Wind über Nordamerika
 - □ load wind
- Variablen:
 - Positionen:
 - □ x,y und z
 - Windgeschwindigkeitsvektoren an diesen Positionen:
 - u,v und w

Matrix in Vektor

b=a(:)

Eine Matrix in einen Vektor konvertieren:

$$a = [1 \ 4 \ 7; 2 \ 5 \ 8; \ 3 \ 6 \ 9];$$

1	4	7
2	5	8
3	6	9

1
2
3
4
5

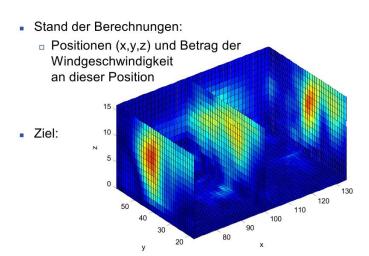
6

8

Spalten von links nach rechts werden untereinander gesetzt.

Maximum/Minimum einer Matrix

```
min = min(x(:));
max = max(x(:));
max = max(y(:));
```

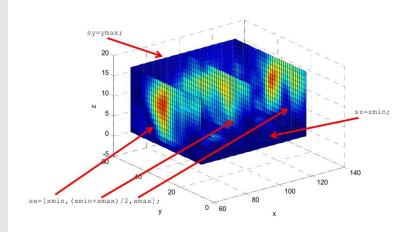

```
• zmin = min(z(:));
```

Windgeschwindigkeit

- In den ersten Beispielen wird die Windrichtung an den verschiedenen Positionen nicht benötigt.
- Betrag der Windgeschwindigkeit:
 - Euklidische Norm: Wurzel aus der Quadratsumme
- Achtung: Elementweise soll dies geschehen!

```
\square wind speed = sqrt(u.^2 + v.^2 + w.^2);
```

Schnittbilder

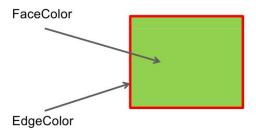

slice-Befehl

- slice(x,y,z,wind speed,sx,sy,sz);
- x,y,z und wind_speed stehen schon zu Verfügung
- sx, sy und sz Position der Schnittebene entlang der x,y und z-Achse
 - Kann auch Vektor sein!

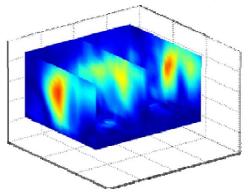
Beispiel

sz=zmin;

```
sx=[xmin, (xmin+xmax)/2, xmax];
sy=ymax;
```



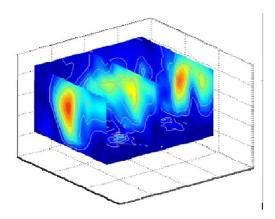
Eigenschaften ändern


- Um das Aussehen von Grafikobjekten (nachträglich) zu ändern, muss man auf diese gezielt zugreifen können.
- Jedes Grafikobjekt gibt eine eindeutige Kennung (handle) als Funktionswert zurück.
- Beispiel: hsurfaces=slice(x,y,z,wind_speed,sx,sy,sz)
- Mit der get (<handle>) -Methode können
 Eigenschaften abgerufen werden.
- Mit der set (<handle>) Methode können Eigenschaften gesetzt werden.

Farben ändern

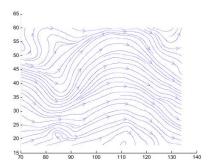
set(hsurfaces,'FaceColor','interp,,
'EdgeColor','none')

- Schwarzes Gitter ist weg.
- Farben auf den Oberflächen werden interpoliert.



contourslice-Befehl

Höhenringe auf die Schnitteben: hcont = contourslice(x,y,z,wind_speed,sx,sy,sz);


- Parameterfolge identisch mit dem slice-Befehl.
- Farbe und Strichdicke der Linien ändern set (hcont, 'EdgeColor', [.7, .7, .7], 'LineWidth', .5)
- [.7,.7,.7]: [rot, grün, blau]
 - Alle Werte identisch = Grauwert

Graue Höhenlinien (gleiche Windstärke)

Vektorfelder

- In Matlab gibt es diverse Funktionen, um Vektorfelder zu visualisieren.
- Aus der Wettervorhersage bekannte Darstellung:

streamslice-Befehl

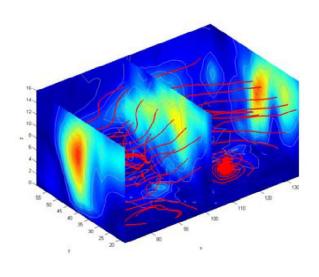
- Der streamslice-Befehl zeichnet auf Schnittebenen die Strömungsfelder.
- Parameterfolge identisch mit dem slice-Befehl.

Beispiel:

```
streamslice(x,y,z,u,v,w,[],[],
(zmax+zmin)/2)
```

Keine Schnittebenen in x und y, aber eine in der Mitte von z.

Datenmatrix


- Der Befehl meshgrid erzeugt Datenmatrizen für die Berechnung und Visualisierung von 3D-Feldern.
- Manchmal müssen die Daten mit diesem Befehl aufbereitet werden.
- Beispiel:
 - Man möchte innerhalb der Wind-Gebietes
 Datenpunkte bestimmen, an denen Berechnungen durchgeführt werden:
 - [sx,sy,sz] =
 meshgrid(80,20:5:50,1:5:15);
 - X-Position: 80
 - Y-Position: 20 bis 50 in 5er Schritten
 - □ Z-Position: 1 bis 15 in 5er Schritten

Stromlinien

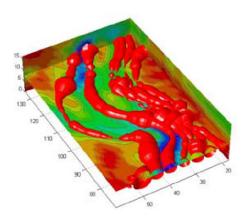
- Die für die Visualisierung von 3D-Stromlinien werden 3D-Vektorfelder benötigt.
- Beispiel:

Farbe und Dicke der Stromlinien setzen:

```
set(hlines, 'LineWidth', 2, 'Color', 'r')
```


Strombänder mit streamribbon

```
load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
hribbon=streamribbon(x,y,z,u,v,w,sx,sy,sz);
set(hribbon,'FaceColor','interp','EdgeColor','none')
```


Ansicht und Beleuchtung

```
axis tight
view(3);
daspect([2,2,1])
camlight; lighting gouraud
```

Strombänder mit streamtube

```
htubes =
streamtube(x,y,z,u,v,w,sx,sy,sz,[2.5 20]);
```

- [2.5 20]:
 - 20 = Anzahl der "Ecken" der Röhre
 - 2.5 = Verstärkungsfaktor für den Durchmesser
- set(htubes, 'EdgeColor', 'none', 'FaceColor',
 'r',
 'AmbientStrength', .5)

